1
|
Wolff A, Krone P, Maennicke J, Henne J, Oehmcke-Hecht S, Redwanz C, Bergmann-Ewert W, Junghanss C, Henze L, Maletzki C. Prophylaxis with abemaciclib delays tumorigenesis in dMMR mice by altering immune responses and reducing immunosuppressive extracellular vesicle secretion. Transl Oncol 2024; 47:102053. [PMID: 38986222 PMCID: PMC11296063 DOI: 10.1016/j.tranon.2024.102053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/29/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND The CDK4/6 inhibitor abemaciclib is an FDA-approved agent and induces T-cell-mediated immunity. Previously, we confirmed the therapeutic potential of abemaciclib on mismatch repair-deficient (dMMR) tumors in mice. Here, we applied a prophylactic administration/dosage setting using two preclinical mouse models of dMMR-driven cancer. METHODS Mlh1-/- and Msh2loxP/loxP mice received repeated prophylactic applications of abemaciclib mesylate (75 mg/kg bw, per oral) as monotherapy or were left untreated. Blood phenotyping and multiplex cytokine measurements were performed regularly. The tumor microenvironment was evaluated by immunofluorescence and Nanostring-based gene expression profiling. Numbers, size and immune composition and activity of extracellular vesicles (EVs) were studied at the endpoint. FINDINGS Prophylactic abemaciclib-administration delayed tumor development and significantly prolonged overall survival in both mouse strains (Mlh1-/-: 50.0 wks vs. control: 33.9 wks; Msh2loxP/loxP;TgTg(Vil1-cre: 58.4 wks vs. control 44.4 wks). In Mlh1-/- mice, pro-inflammatory cytokines (IL-2, IL-6) significantly increased, whereas IL-10 and IL-17A decreased. Circulating and splenic exhausted and regulatory T cell numbers were significantly lower in the abemaciclib groups. Deeper analysis of late-onset tumors revealed activation of the Hedgehog and Notch signaling in Mlh1-/- mice, and activation of the MAPK pathway in Msh2loxP/loxP;TgTg(Vil1-cre mice. Still, arising tumors had fewer infiltrating myeloid-derived suppressor cells (vs. control). Notably, prophylactic abemaciclib-administration prevented secretion of procoagulant EVs but triggered release of immunomodulatory EVs in Mlh1-/- mice. INTERPRETATION Prophylactic abemaciclib prolongs survival via global immunomodulation. Prophylactic use of abemaciclib should be considered further for individuals with inherited dMMR. FUNDING This work was supported by grants from the German research foundation [DFG grant number: MA5799/2-2] and the Brigitte und Dr. Konstanze Wegener-Stiftung to CM.
Collapse
Affiliation(s)
- Annabell Wolff
- Department of Medicine, Clinic III -Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, University of Rostock, 18057 Rostock, Germany
| | - Paula Krone
- Department of Medicine, Clinic III -Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, University of Rostock, 18057 Rostock, Germany
| | - Johanna Maennicke
- Department of Medicine, Clinic III -Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, University of Rostock, 18057 Rostock, Germany
| | - Julia Henne
- Department of Medicine, Clinic III -Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, University of Rostock, 18057 Rostock, Germany
| | - Sonja Oehmcke-Hecht
- Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, University of Rostock, 18057 Rostock, Germany
| | - Caterina Redwanz
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Germany
| | - Wendy Bergmann-Ewert
- Core Facility for Cell Sorting & Cell Analysis, Laboratory for Clinical Immunology, Rostock University Medical Centre, 18057, Rostock, Germany
| | - Christian Junghanss
- Department of Medicine, Clinic III -Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, University of Rostock, 18057 Rostock, Germany
| | - Larissa Henze
- Department of Medicine, Clinic III -Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, University of Rostock, 18057 Rostock, Germany
| | - Claudia Maletzki
- Department of Medicine, Clinic III -Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, University of Rostock, 18057 Rostock, Germany.
| |
Collapse
|
2
|
Kayser A, Wolff A, Berlin P, Duehring L, Henze L, Mundkowski R, Bergmann W, Müller-Hilke B, Wagner C, Huehns M, Oehmcke-Hecht S, Maletzki C. Selective but not pan-CDK inhibition abrogates 5-FU-driven tissue factor upregulation in colon cancer. Sci Rep 2024; 14:10582. [PMID: 38719932 PMCID: PMC11078971 DOI: 10.1038/s41598-024-61076-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
Thromboembolic events are complications in cancer patients and hypercoagulability has been linked to the tissue factor (TF) pathway, making this an attractive target. Here, we investigated the effects of chemotherapeutics and CDK inhibitors (CDKI) abemaciclib/palbociclib (CDK4/6), THZ-1 (CDK7/12/13), and dinaciclib (CDK1/2/5/9) alone and in combination regimens on TF abundance and coagulation. The human colorectal cancer (CRC) cell line HROC173 was treated with 5-FU or gemcitabine to stimulate TF expression. TF+ cells were sorted, recultured, and re-analyzed. The effect of treatment alone or in combination was assessed by functional assays. Low-dose chemotherapy induced a hypercoagulable state and significantly upregulated TF, even after reculture without treatment. Cells exhibited characteristics of epithelial-mesenchymal transition, including high expression of vimentin and mucin. Dinaciclib and THZ-1 also upregulated TF, while abemaciclib and palbociclib downregulated it. Similar results were observed in coagulation assays. The same anticoagulant activity of abemaciclib was seen after incubation with peripheral immune cells from healthy donors and CRC patients. Abemaciclib reversed 5-FU-induced TF upregulation and prolonged clotting times in second-line treatment. Effects were independent of cytotoxicity, senescence, and p27kip1 induction. TF-antibody blocking experiments confirmed the importance of TF in plasma coagulation, with Factor XII playing a minor role. Short-term abemaciclib counteracts 5-FU-induced hypercoagulation and eventually even prevents thromboembolic events.
Collapse
Affiliation(s)
- Annika Kayser
- Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
| | - Annabell Wolff
- Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
- Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, 18057, Rostock, Germany
| | - Peggy Berlin
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, 18057, Rostock, Germany
| | - Lara Duehring
- Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
- Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, 18057, Rostock, Germany
| | - Larissa Henze
- Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
- Department of Internal Medicine II, Asklepios Hospital Harz, Goslar, Germany
| | - Ralf Mundkowski
- Center of Pharmacology and Toxicology, Institute of Clinical Pharmacology, Rostock University Medical Center, 18057, Rostock, Germany
| | - Wendy Bergmann
- Laboratory for Clinical Immunology, Core Facility for Cell Sorting and Cell Analysis, Rostock University Medical Center, 18057, Rostock, Germany
| | - Brigitte Müller-Hilke
- Laboratory for Clinical Immunology, Core Facility for Cell Sorting and Cell Analysis, Rostock University Medical Center, 18057, Rostock, Germany
| | - Charlotte Wagner
- Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
| | - Maja Huehns
- Institute of Pathology, Rostock University Medical Center, 18057, Rostock, Germany
| | - Sonja Oehmcke-Hecht
- Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, 18057, Rostock, Germany.
| | - Claudia Maletzki
- Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany.
| |
Collapse
|
3
|
Beleva EA, Deneva TI, Stoencheva SS, Grudeva-Popova ZG. Longitudinal Dynamics of Coagulation and Angiogenesis Markers in Cancer Patients During and After Chemotherapy. Clin Appl Thromb Hemost 2021; 27:10760296211056637. [PMID: 34918975 PMCID: PMC8728769 DOI: 10.1177/10760296211056637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hemostatic parameters have been investigated as molecular determinants of tumor
progression. To analyze the dynamics of microparticle-associated tissue factor
activity (MPTF), tissue factor antigen (TF-Ag), and angiopоietin-2 (ANG-2) in
cancer patients before, during, and after active treatment and to explore their
potential as biomarkers for metastatic occurrence and death. Blood for the
analysis of MPTF, TF-Ag, ANG-2, and conventional hemostatic tests was sampled in
111 patients with various cancers at 4 consecutive visits: before first
chemotherapy cycle, after 3 courses, at the sixth course, and 3 months after
chemotherapy cessation. Patients were followed up until metastatic
progression/death or the end of the study. MPTF did not change during
chemotherapy, but increased significantly after treatment cessation. Total TF-Ag
and ANG-2 decreased throughout active treatment. Significant drop of their
levels was observed 3 months post therapy cessation. Progressive disease was
significantly associated with higher pre-chemotherapy TF-Ag and fibrinogen.
Elevated baseline levels of fibrinogen were associated with increased risk of
shortened progression free survival. Cessation of chemotherapy is associated
with significant change of hemostatic parameters. Pre-chemotherapy levels of
TF-Ag and fibrinogen may be informative of disease state and prognosis.
Collapse
Affiliation(s)
- Elina A Beleva
- 118870Medical University of Plovdiv, Plovdiv, Bulgaria.,564825University Multiprofile Hospital for Active Treatment "Sveti Georgi" EAD-Plovdiv, Plovdiv, Bulgaria
| | - Tanya I Deneva
- 118870Medical University of Plovdiv, Plovdiv, Bulgaria.,564825University Multiprofile Hospital for Active Treatment "Sveti Georgi" EAD-Plovdiv, Plovdiv, Bulgaria
| | - Snezhana S Stoencheva
- 118870Medical University of Plovdiv, Plovdiv, Bulgaria.,564825University Multiprofile Hospital for Active Treatment "Sveti Georgi" EAD-Plovdiv, Plovdiv, Bulgaria
| | - Zhanet G Grudeva-Popova
- 118870Medical University of Plovdiv, Plovdiv, Bulgaria.,564825University Multiprofile Hospital for Active Treatment "Sveti Georgi" EAD-Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
4
|
Forte D, Barone M, Palandri F, Catani L. The "Vesicular Intelligence" Strategy of Blood Cancers. Genes (Basel) 2021; 12:genes12030416. [PMID: 33805807 PMCID: PMC7999060 DOI: 10.3390/genes12030416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/13/2022] Open
Abstract
Blood cancers are a heterogeneous group of disorders including leukemia, multiple myeloma, and lymphoma. They may derive from the clonal evolution of the hemopoietic stem cell compartment or from the transformation of progenitors with immune potential. Extracellular vesicles (EVs) are membrane-bound nanovesicles which are released by cells into body fluids with a role in intercellular communication in physiology and pathology, including cancer. EV cargos are enriched in nucleic acids, proteins, and lipids, and these molecules can be delivered to target cells to influence their biological properties and modify surrounding or distant targets. In this review, we will describe the “smart strategy” on how blood cancer-derived EVs modulate tumor cell development and maintenance. Moreover, we will also depict the function of microenvironment-derived EVs in blood cancers and discuss how the interplay between tumor and microenvironment affects blood cancer cell growth and spreading, immune response, angiogenesis, thrombogenicity, and drug resistance. The potential of EVs as non-invasive biomarkers will be also discussed. Lastly, we discuss the clinical application viewpoint of EVs in blood cancers. Overall, blood cancers apply a ‘vesicular intelligence’ strategy to spread signals over their microenvironment, promoting the development and/or maintenance of the malignant clone.
Collapse
Affiliation(s)
- Dorian Forte
- IRCCS Azienda Ospedaliero—Department of Experimental, Diagnostic and Specialty Medicine, School of Medicine, Institute of Hematology “Seràgnoli”, University of Bologna, 40138 Bologna, Italy; (D.F.); (M.B.)
| | - Martina Barone
- IRCCS Azienda Ospedaliero—Department of Experimental, Diagnostic and Specialty Medicine, School of Medicine, Institute of Hematology “Seràgnoli”, University of Bologna, 40138 Bologna, Italy; (D.F.); (M.B.)
| | - Francesca Palandri
- IRCCS Azienda Ospedaliero—Institute of Hematology “Seràgnoli”, University of Bologna, 40138 Bologna, Italy
- Correspondence: (F.P.); (L.C.); Tel.: +39-5121-43044 (F.P.); +39-5121-43837 (L.C.)
| | - Lucia Catani
- IRCCS Azienda Ospedaliero—Department of Experimental, Diagnostic and Specialty Medicine, School of Medicine, Institute of Hematology “Seràgnoli”, University of Bologna, 40138 Bologna, Italy; (D.F.); (M.B.)
- IRCCS Azienda Ospedaliero—Institute of Hematology “Seràgnoli”, University of Bologna, 40138 Bologna, Italy
- Correspondence: (F.P.); (L.C.); Tel.: +39-5121-43044 (F.P.); +39-5121-43837 (L.C.)
| |
Collapse
|
5
|
A pilot study of procoagulant platelet extracellular vesicles and P-selectin increase during induction treatment in acute lymphoblastic leukaemia paediatric patients: two new biomarkers of thrombogenic risk? J Thromb Thrombolysis 2020; 51:711-719. [PMID: 33247807 DOI: 10.1007/s11239-020-02346-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/16/2020] [Indexed: 01/19/2023]
Abstract
In paediatric acute lymphoblastic leukaemia (ALL), focus has shifted towards preventing treatment-related complications, including venous thromboembolism, the cause of significant mortality and morbidity. To better understand thrombogenic mechanisms during induction treatment, we studied the number, origin and procoagulant activity of extracellular vesicles (EVs) and P-selectin level throughout the induction course in 24 paediatric patients. EVs were mainly of platelet origin. We observed a significant increase in EV number, in platelet EV number and P-selectin level throughout the induction course. There was a correlation between higher EV and platelet EV number, P-selectin level, higher platelet count and leucocyte count. We also observed a correlation between higher EV procoagulant activity and higher platelet count and leucocyte count and higher P-selectin level. Older age and T phenotype were associated with a higher EV procoagulant activity. Platelet EV generation may play a role in thrombogenic complications in ALL patients and could serve as a biomarker to identify patients with a high risk of thrombosis. As a marker of platelet activation, P-selectin may be another relevant marker with the advantage of being easier to analyse in clinical practice.
Collapse
|
6
|
Ikezoe T. Advances in the diagnosis and treatment of disseminated intravascular coagulation in haematological malignancies. Int J Hematol 2020; 113:34-44. [PMID: 32902759 DOI: 10.1007/s12185-020-02992-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/22/2020] [Accepted: 08/28/2020] [Indexed: 11/26/2022]
Abstract
Haematological malignancies, including acute leukaemia and non-Hodgkin lymphoma, are one of the underlying diseases that frequently cause disseminated intravascular coagulation (DIC), an acquired thrombotic disorder. Concomitant DIC is associated with the severity of the underlying disease and poor prognosis. The Japanese Society on Thrombosis and Hemostasis released the new DIC diagnostic criteria in 2017. This criteria include coagulation markers such as soluble fibrin and the thrombin-antithrombin complex to more accurately evaluate the hypercoagulable state in patients. Among several groups of anticoagulants available, recombinant human soluble thrombomodulin is most frequently used to treat DIC caused by haematological malignancies in Japan. DIC is remitted in parallel with the improvement of the underlying haematological diseases; thus, there is room for debate regarding whether the treatment of DIC would improve the prognosis of patients. Haematopoietic stem cell transplantation as well as the recently introduced chimeric antigen receptor (CAR)-T-cell therapy are innovative therapies to produce a cure in a subset of patients with haematological malignancies. However, coagulopathy frequently occurs after these therapies, which limits the success of the treatment. For example, DIC is noted in approximately 50% of patients after CAT-T-cell therapy in conjunction with cytokine release syndrome. Hematopoietic stem cell transplantation (HSCT) causes endotheliitis, which triggers coagulopathy and the development of potentially lethal complications, such as sinusoidal obstruction syndrome/veno-occlusive disease and transplant-associated thrombotic microangiopathy. This review article describes the pathogenesis, clinical manifestation, diagnosis, and treatment of DIC caused by haematological malignancies, CAR-T-cell therapy, and HSCT.
Collapse
Affiliation(s)
- Takayuki Ikezoe
- Department of Haematology, Fukushima Medical University, Fukushima, 960-1295, Japan.
| |
Collapse
|