1
|
Zhang Y, Khorshidian H, Mohammadi M, Sanati-Nezhad A, Hejazi SH. Functionalized multiscale visual models to unravel flow and transport physics in porous structures. WATER RESEARCH 2020; 175:115676. [PMID: 32193027 DOI: 10.1016/j.watres.2020.115676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 02/18/2020] [Accepted: 02/27/2020] [Indexed: 06/10/2023]
Abstract
The fluid flow, species transport, and chemical reactions in geological formations are the chief mechanisms in engineering the exploitation of fossil fuels and geothermal energy, the geological storage of carbon dioxide (CO2), and the disposal of hazardous materials. Porous rock is characterized by a wide surface area, where the physicochemical fluid-solid interactions dominate the multiphase flow behavior. A variety of visual models with differences in dimensions, patterns, surface properties, and fabrication techniques have been widely utilized to simulate and directly visualize such interactions in porous media. This review discusses the six categories of visual models used in geological flow applications, including packed beds, Hele-Shaw cells, synthesized microchips (also known as microfluidic chips or micromodels), geomaterial-dominated microchips, three-dimensional (3D) microchips, and nanofluidics. For each category, critical technical points (such as surface chemistry and geometry) and practical applications are summarized. Finally, we discuss opportunities and provide a framework for the development of custom-built visual models.
Collapse
Affiliation(s)
- Yaqi Zhang
- Interfacial Flows and Porous Media Laboratory, Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada; BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Hossein Khorshidian
- Interfacial Flows and Porous Media Laboratory, Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada; BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Mehdi Mohammadi
- Interfacial Flows and Porous Media Laboratory, Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada; BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada; Biological Sciences, University of Calgary, Canada
| | - Amir Sanati-Nezhad
- Interfacial Flows and Porous Media Laboratory, Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada; BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada; Centre for Bioengineering Research and Education, University of Calgary, Calgary, Canada
| | - S Hossein Hejazi
- Interfacial Flows and Porous Media Laboratory, Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|