1
|
Dyagala S, Halder S, Aggrawal R, Paul M, Aswal VK, Biswas S, Saha SK. ct-DNA compaction by nanoparticles formed by silica and gemini surfactants having hydroxyl group substituted spacers: In vitro, in vivo, and ex vivo gene uptake to cancer cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 261:113066. [PMID: 39556939 DOI: 10.1016/j.jphotobiol.2024.113066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/20/2024]
Abstract
Hybrid nanoparticles formed by Silica (SiO2) coated with cationic gemini surfactants with variable hydroxyl group substituted spacers, 12-4(OH)-12,2Br- and 12-4(OH)2-12,2Br- have shown a great extent of compaction of calf thymus DNA (ct-DNA) compared to conventional counterpart cationic surfactant, dodecyl trimethylammonium bromide (DTAB). Study shows not only the hydrophobicity of the spacer but also the hydrogen bonding interactions between the hydroxyl group substituted spacer and DNA have a great role in DNA compaction. 12-4(OH)2-12,2Br- is more efficient in compacting ct-DNA compared to 12-4(OH)-12,2Br- due to the stronger binding of the former with ct-DNA than the latter. While 12-4(OH)-12,2Br- makes 50 % ct-DNA compaction at its 0.63 μM concentration in the presence of SiO2 nanoparticles, the same % of compaction can be achieved at a concentration as low as 0.25 μM of 12-4(OH)2-12,2Br-. However, DTAB makes 50 % ct-DNA compaction at a concentration as high as 7.00 μM under the same condition. Therefore, the present systems address the very common challenge, i.e., cytotoxicity due to cationic surfactants. The system of 12-4(OH)2-12,2Br- coated SiO2 nanoparticles displays the maximum cell viability (≥90 %), causing the least cell death in the mouse fibroblast cells (NIH3T3) cell lines compared to the cell viability of ≤80 % for DTAB. 12-4(OH)2-12,2Br- coated SiO2 nanoparticles system has presented excellent in vitro cellular uptake of genes on mouse mammary gland adenocarcinoma (4T1) cells after incubating for 3 h and 6 h. In vivo study shows that 12-4(OH)2-12,2Br- coated SiO2 nanoparticles system takes the highest amount of ct-DNA in cells and tumors in a time-dependent manner. The ex vivo studies using different organs of the mice demonstrate that the tumor sites in the breast of the mice are most affected by these formulations. Cytotoxicity assays and cellular uptake studies suggest that the present systems can be used for potential applications for gene delivery and oncological therapies.
Collapse
Affiliation(s)
- Shalini Dyagala
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Sayantan Halder
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Rishika Aggrawal
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Milan Paul
- Department of Pharmacy, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Vinod K Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre (BARC), Trombay, Mumbai, Maharashtra 400085, India
| | - Swati Biswas
- Department of Pharmacy, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India.
| | - Subit Kumar Saha
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India.
| |
Collapse
|
2
|
Qamar M, Shafiullah, Sultanat, Lal H, Rizvi A, Farhan M. Synthesis, characterisation, and in vitro antiparasitic activity of new flavanoidal tetrazinan-6'-ones and their binding study with calf thymus DNA using molecular modelling and spectroscopic techniques. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124757. [PMID: 38959688 DOI: 10.1016/j.saa.2024.124757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/17/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
With the developing resistance to traditional antiparasitic medications, the purpose of this study was to efficiently develop a series of six noble flavanoidal tetrazinane-6'-one derivatives by a one-pot reaction pathway. FT-IR, 1HNMR, 13CNMR, and Mass spectra were employed for the structural elucidation of the synthesized compounds (7-12). Clinostomum complanatum, a parasite infection model that has been well-established, demonstrated that all the synthesized compounds are potent antiparasitic agents. DNA is the main target for various medicinal compounds. As a result, thestudy of how small molecules attach to DNA has received a lot of attention. In the present study, we have performed various biophysical techniques to determine the mode of binding of synthesized compounds (7-12) with calf thymus DNA (ct-DNA). It was observed from the UV-visible absorbance and fluorescence spectra that all synthesized compounds (7-12) form complexes with the ct-DNA. The value of binding constant (Kb) was obtained to be in the range of 4.36---24.50 × 103 M - 1 at 298 K. Competitive displacement assay with ethidium bromide (EB), CD spectral analysis, viscosity measurements, and in silico molecular docking confirmed that ligands (7-12) incorporate with ct-DNA through groove binding only. Molecular docking studies were performed for all synthesized compounds with the calf thymus DNA and it was found that all the newly synthesized compounds strongly bind with the chain B of DNA in the minor groove with the value of binding energy in the range of -8.54 to -9.04 kcal per mole and several hydrogen bonding interactions.
Collapse
Affiliation(s)
- Mohd Qamar
- Department of Chemistry, Aligarh Muslim University Aligarh, India, 202002
| | - Shafiullah
- Department of Chemistry, Aligarh Muslim University Aligarh, India, 202002.
| | - Sultanat
- Department of Chemistry, Aligarh Muslim University Aligarh, India, 202002
| | - Hira Lal
- Department of Chemistry, Aligarh Muslim University Aligarh, India, 202002
| | - Asim Rizvi
- Department of Kulliyat, Faculty of Unani Medicine, Aligarh Muslim University, Aligarh 202002, India
| | - Mohd Farhan
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
3
|
Amir M, Aamir Qureshi M, Khan A, Nayeem SM, Ayoub Malik W, Javed S. Exploring the interaction of tepotinib with calf thymus DNA using molecular dynamics simulation and multispectroscopic techniques. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123678. [PMID: 38039637 DOI: 10.1016/j.saa.2023.123678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/05/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
In recent times, there has been a surge in the discovery of drugs that directly interact with DNA, influencing gene expression. As a result, understanding how biomolecules interact with DNA has become a major area of research. One such drug is Tepotinib (TPT), an FDA-approved anti-cancer medication known as a MET tyrosine kinase inhibitor, used in chemotherapy for metastatic non-small cell lung cancer (NSCLC) with MET exon 14 skipping alterations. In our study, we adopted both biophysical and in-silico methods to investigate the binding relationship of TPT and ctDNA. The absorption spectra of ctDNA exhibited a hypochromic effect when titrated with TPT and the binding constant of TPT-ctDNA complex was calculated, Ka = 9.91 × 104 M-1. By computing bimolecular enhancement constant (KB) and thermodynamic enhancement constant (KD) in fluorometric investigations, it was found that the fluorescence enhancement is a result of a static process involving the ctDNA-TPT complex formation in the ground state, as opposed to a dynamic process. The displacement assay results further supported this finding, showing that TPT exhibits a binding preference for minor groove of ct-DNA and was also demonstrated by KI quenching and CD spectroscopy. The molecular docking and molecular dynamic simulations validated TPT's groove binding nature and binding pattern with ctDNA, respectively. Thus, the results of our present investigation offer valuable insights into the interaction between TPT and ctDNA. It is evident that TPT, as an anti-cancer medication, binds to the minor groove of ctDNA.
Collapse
Affiliation(s)
- Mohd Amir
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India.
| | - Mohd Aamir Qureshi
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India.
| | - Ashma Khan
- Department of Chemistry, Faculty of Sciences, Aligarh Muslim University, Aligarh 202002, India.
| | - Shahid M Nayeem
- Department of Chemistry, Faculty of Sciences, Aligarh Muslim University, Aligarh 202002, India.
| | - Waseem Ayoub Malik
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India.
| | - Saleem Javed
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
4
|
Rahaman A, Anjum F, Kumari A, Shafie A, Alee M, Badr O, Khan SH, Ashour AA, Hazazi A, Arif S, Zeng XA. Deciphering the binding mechanism of an anti-cancer phytochemical plumbagin with calf thymus DNA using biophysical and in silico techniques. Front Chem 2023; 11:1248458. [PMID: 37705997 PMCID: PMC10497110 DOI: 10.3389/fchem.2023.1248458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/17/2023] [Indexed: 09/15/2023] Open
Abstract
Plumbagin (PLM), a plant derivative, is well known for a wide range of therapeutic effects in humans including anti-cancer, anti-inflammatory, anti-oxidant, and anti-microbial. Cytotoxic and genotoxic potential of this phytochemical has been studied which demands further insight. DNA being a major target for several drugs was taken to study against PLM to understand its effects on the cellular system. UV-Vis spectroscopy has indicated the binding of PLM to ctDNA and dye displacement assays have confirmed the formation of PLM-ctDNA complex. The insignificant changes in circular dichroism spectra suggested that PLM is not affecting the structural makeup of the ctDNA, hence the binding could be peripheral and not intercalating. Further, the relative viscosity and minimal change in melting temperature upon the complex formation supported this finding and confirmed the groove binding of PLM. Molecular docking analysis and simulation studies also show PLM as a minor groove binder to DNA and provide details on the interaction dynamics of PLM-DNA complex. Docking followed by a 100 ns simulation reveals the negative Gibbs free energy change (∆G = -6.6 kcal mol-1), and the formation of a stable complex. The PLM- DNA complex with stable dynamics was further supported by different parameters including RMSD, RMSF, SASA, Rg, and the energy profile of interaction. This study provides an insight into the cytotoxic and genotoxic mechanism of PLM which can be a crucial step forward to exploit its therapeutic potential against several diseases including cancer.
Collapse
Affiliation(s)
- Abdul Rahaman
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, Guangdong, China
- School of Food Science and Engineering, Foshan University, Foshan, China
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Aknita Kumari
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Mahafooj Alee
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Omnia Badr
- Department of Genetics and Genetic Engineering, Faculty of Agriculture, Benha University, Qalyubia, Egypt
| | - Shaheer Hasan Khan
- Enzymology and Nanotechnology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Amal Adnan Ashour
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, Taif, Saudi Arabia
| | - Ali Hazazi
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh, Saudi Arabia
| | - Sultan Arif
- Department of Plastic Surgery and Burn Unit, Security Forces Hospital, Riyadh, Saudi Arabia
| | - Xin-An Zeng
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, Guangdong, China
- School of Food Science and Engineering, Foshan University, Foshan, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Overseas Expertise Introduction Centre for Discipline Innovation of Food Nutrition and Human Health (111 Centre), Guangzhou, China
| |
Collapse
|
5
|
Halder S, Paul M, Dyagala S, Aggrawal R, Aswal VK, Biswas S, Saha SK. Role of Gemini Surfactants with Variable Spacers and SiO 2 Nanoparticles in ct-DNA Compaction and Applications toward In Vitro/ In Vivo Gene Delivery. ACS APPLIED BIO MATERIALS 2023. [PMID: 37277159 DOI: 10.1021/acsabm.3c00256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Compaction of calf thymus DNA (ct-DNA) by two cationic gemini surfactants, 12-4-12 and 12-8-12, in the absence and presence of negatively charged SiO2 nanoparticles (NPs) (∼100 nm) has been explored using various techniques. 12-8-12 having a longer hydrophobic spacer induces a greater extent of ct-DNA compaction than 12-4-12, which becomes more efficient with SiO2 NPs. While 50% ct-DNA compaction in the presence of SiO2 NPs occurs at ∼77 nM of 12-8-12 and ∼130 nM of 12-4-12, but a conventional counterpart surfactant, DTAB, does it at its concentration as high as ∼7 μM. Time-resolved fluorescence anisotropy measurements show changes in the rotational dynamics of a fluorescent probe, DAPI, and helix segments in the condensed DNA. Fluorescence lifetime data and ethidium bromide exclusion assays reveal the binding sites of surfactants to ct-DNA. 12-8-12 with SiO2 NPs has shown the highest cell viability (≥90%) and least cell death in the human embryonic kidney (HEK) 293 cell lines in contrast to the cell viability of ≤80% for DTAB. These results show that 12-8-12 with SiO2 NPs has the highest time and dose-dependent cytotoxicity compared to 12-8-12 and 12-4-12 in the murine breast cancer 4T1 cell line. Fluorescence microscopy and flow cytometry are performed for in vitro cellular uptake of YOYO-1-labeled ct-DNA with surfactants and SiO2 NPs using 4T1 cells after 3 and 6 h incubations. The in vivo tumor accumulation studies are carried out using a real-time in vivo imaging system after intravenous injection of the samples into 4T1 tumor-bearing mice. 12-8-12 with SiO2 has delivered the highest amount of ct-DNA in cells and tumors in a time-dependent manner. Thus, the application of a gemini surfactant with a hydrophobic spacer and SiO2 NPs in compacting and delivering ct-DNA to the tumor is proven, warranting its further exploration in nucleic acid therapy for cancer treatment.
Collapse
Affiliation(s)
- Sayantan Halder
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Milan Paul
- Department of Pharmacy, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Shalini Dyagala
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Rishika Aggrawal
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Vinod K Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre (BARC), Trombay, Mumbai, Maharashtra 400085, India
| | - Swati Biswas
- Department of Pharmacy, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Subit K Saha
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| |
Collapse
|
6
|
Elucidation of binding interactions and mechanism of rivastigmine tartrate with dsDNA via multi-spectroscopic, electrochemical, and molecular docking studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Chen SY, Ji XX, Song DX, Chen Q, Li Y, Sun N, Wang L, Wu SY, Zhang Y, Zhu MC. A NEW MONOMER Ce(III) COMPLEX BASED ON BIS[(2-PYRIDYL)METHYLENE]PYRIDINE- 2,6-DICARBOHYDRAZONE: SYNTHESIS, DNA BINDING, APOPTOSIS, AND MOLECULAR DOCKING. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622100031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
DNA interaction and BSA binding of O-vanillin-based new Schiff base Co(III) and Ni(II) complexes: Theoretical, experimental, antibacterial and anticancer studies. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Goswami S, Ghosh R, Prasanthan P, Kishore N. Mode of interaction of altretamine with calf thymus DNA: biophysical insights. J Biomol Struct Dyn 2022; 41:3728-3740. [PMID: 35343872 DOI: 10.1080/07391102.2022.2054472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Insights into drug-DNA interactions have importance in medicinal chemistry as it has a major role in the evolution of new therapeutic drugs. Therefore, binding studies of small molecules with DNA are of significant interest. Spectroscopy, coupled with measurements of viscosity and molecular docking studies were employed to obtain mechanistic insights into the binding of altretamine with calf thymus DNA (CT-DNA). The UV-visible spectroscopic measurements study confirmed altretamine-CT-DNA complex formation with affinity constant ([15.68 ± 0.04] × 103 M-1), a value associated with groove binding phenomenon. The associated thermodynamic signatures suggest enthalpically driven interactions. The values of standard molar free energy change (ΔGmo) -(23.93 ± 0.23) kJ mol-1, enthalpy change (ΔvHHmo) -(50.84 ± 0.19) kJ mol-1 and entropy change (ΔSmo) -(90.29 ± 0.12) JK-1 mol-1 indicate the binding is thermodynamically favorable and an important role of the hydrogen bonds and Van der Waals interactions in the binding of altretamine with CT-DNA. Circular dichroism spectroscopy indicated insignificant conformational changes in the DNA backbone upon interaction with altretamine suggesting no distortion and/or unstacking of the base pairs in the DNA helix. UV-melting study suggested that the thermal stability of the DNA backbone is not affected by the binding of the drug. Competitive displacement assays with ethidium bromide, Hoechst-33258 and DAPI established the binding of altretamine with CT-DNA in the minor groove. The mode of binding was further confirmed by viscosity and molecular docking studies. Molecular docking further ascertained binding of altretamine in the minor groove of the CT-DNA, preferably with the A-T rich sequences.
Collapse
Affiliation(s)
- Sathi Goswami
- Department of Chemistry, Indian Institute of Technology Bombay, Maharashtra, India
| | - Ritutama Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Maharashtra, India
| | - Pooja Prasanthan
- Department of Chemistry, Indian Institute of Technology Bombay, Maharashtra, India
| | - Nand Kishore
- Department of Chemistry, Indian Institute of Technology Bombay, Maharashtra, India
| |
Collapse
|
10
|
Keshavarzian E, Asadi Z, Poupon M, Dusek M, Rastegari B. Heterodinuclear Cu–Gd (3d-4f) complex with di-compartmental Schiff base ligand in biological activity: Synthesis, crystal structure, catecholase activity and DNA & BSA-binding studies. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
11
|
Huang X, Zhan J, Huang Y, Chen H, Liang Z, Gan C. Studies on the interaction between 3-biotinylate-6-benzimidazole B-nor-cholesterol analogs and ct-DNA. NEW J CHEM 2022. [DOI: 10.1039/d2nj00896c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interaction mechanism between 3-biotinylate-6-benzimidazole B-nor-cholesterol analogs and ct-DNA was studied under conditions similar to physiological. The interaction mechanism between ct-DNA and three different types of compounds was studied by spectroscopic...
Collapse
|
12
|
Zhang G, Xia X, Xu J, Wu H, Xia L, Qu Y, Han X. Synthesis, structure and property of two d-f heteronuclear Eu-TM (TM = Zn and Cd) complexes with open-chain ether Schiff base ligand. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
13
|
Affiliation(s)
| | | | - S. M. Rahatul Alam
- Department of Chemistry, University of Chittagong, Chittagong, Bangladesh
| |
Collapse
|
14
|
Wang Y, Wu Z, Liu Y, Liu Y, Qiu Y, Yan J, Cheng X, Zhou G. Template‐Directed Synthesis of Two Dinuclear Ni(II) Complexes together with Their Interconversion, Crystal Structures and DNA‐Binding Studies. ChemistrySelect 2020. [DOI: 10.1002/slct.202003007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yang Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety Wuhan Polytechnic University Wuhan 430023 China
- School of Chemical and Environmental Engineering Wuhan Polytechnic University Wuhan 430023 China
| | - Zhongyuan Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety Wuhan Polytechnic University Wuhan 430023 China
| | - Yuxiu Liu
- School of Chemical and Environmental Engineering Wuhan Polytechnic University Wuhan 430023 China
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety Wuhan Polytechnic University Wuhan 430023 China
| | - Yinsheng Qiu
- Hubei Key Laboratory of Animal Nutrition and Feed Science Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety Wuhan Polytechnic University Wuhan 430023 China
| | - Juntao Yan
- School of Chemical and Environmental Engineering Wuhan Polytechnic University Wuhan 430023 China
| | - Xianzhong Cheng
- Hubei Key Laboratory of Animal Nutrition and Feed Science Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety Wuhan Polytechnic University Wuhan 430023 China
- School of Chemical and Environmental Engineering Wuhan Polytechnic University Wuhan 430023 China
| | - Guoqing Zhou
- Hubei Key Laboratory of Animal Nutrition and Feed Science Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety Wuhan Polytechnic University Wuhan 430023 China
| |
Collapse
|
15
|
Possato B, Chrispim PBH, Alves JQ, Ramos LCB, Marques E, de Oliveira AC, da Silva RS, Formiga ALB, Nikolaou S. Anticancer activity and DNA interaction of ruthenium acetate clusters bearing azanaphthalene ancillary ligands. Polyhedron 2020. [DOI: 10.1016/j.poly.2019.114261] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Kumari S, Halder S, Aggrawal R, Sundar G, Saha SK. Effect of gemini surfactants on binding interactions of Coumarin 485 with calf thymus deoxyribonucleic acid in presence of nanotubes of β-cyclodextrin. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Ding P, Wang Y, Kou H, Li J, Shi B. Synthesis of heterobinuclear Cu(Ⅱ)-Ni(Ⅱ) complex: Structure, CT-DNA interaction, hydrolytic function and antibacterial studies. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.06.081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
Zarei L, Asadi Z, Dusek M, Eigner V. Homodinuclear Ni (II) and Cu (II) Schiff base complexes derived from O-vanillin with a pyrazole bridge: Preparation, crystal structures, DNA and protein (BSA) binding, DNA cleavage, molecular docking and cytotoxicity study. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.02.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
Pathak U, Roy A, Mandal DD, Das P, Kumar T, Mandal T. Bioattenuation of phenol and cyanide involving immobilised spent tea activated carbon with
Alcaligenes faecalis
JF339228
: Critical assessment of the degraded intermediates. ASIA-PAC J CHEM ENG 2018. [DOI: 10.1002/apj.2278] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Ananya Roy
- Department of Chemical EngineeringNIT Durgapur India
| | | | - Papita Das
- Department of Chemical EngineeringJadavpur University Kolkata India
| | | | - Tamal Mandal
- Department of Chemical EngineeringNIT Durgapur India
| |
Collapse
|
20
|
Mukherjee A, Ghosh S, Sarkar R, Samanta S, Ghosh S, Pal M, Majee A, Sen SK, Singh B. Synthesis, characterization and unravelling the molecular interaction of new bioactive 4-hydroxycoumarin derivative with biopolymer: Insights from spectroscopic and theoretical aspect. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 189:124-137. [DOI: 10.1016/j.jphotobiol.2018.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/31/2018] [Accepted: 10/04/2018] [Indexed: 01/18/2023]
|
21
|
Dong XY, Zheng SS, Dong YJ, Meng JL, Dong WK. Crystal Structure, and Luminescent Property of the Zinc(II) Complex Based on 2-Hydroxynaphthaldehyde. J STRUCT CHEM+ 2018. [DOI: 10.1134/s0022476618040340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Łodyga-Chruscińska E, Pilo M, Zucca A, Garribba E, Klewicka E, Rowińska-Żyrek M, Symonowicz M, Chrusciński L, Cheshchevik VT. Physicochemical, antioxidant, DNA cleaving properties and antimicrobial activity of fisetin-copper chelates. J Inorg Biochem 2018; 180:101-118. [DOI: 10.1016/j.jinorgbio.2017.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/22/2017] [Accepted: 12/05/2017] [Indexed: 10/18/2022]
|
23
|
Li J, Jia HR, Guo JQ, Sun YX. Crystal structure of diaqua-bis( N, N-dimethylformamide-κ 1
O)-bis{3-((5-chloro-2-oxidobenzylidene)amino)-2-oxo-2 H-chromen-4-olato-κ 4
N, O, O′: O′}dinickel(II), C 38H 34Ni 2Cl 2N 4O 12. Z KRIST-NEW CRYST ST 2018. [DOI: 10.1515/ncrs-2017-0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C38H34Ni2Cl2N4O12, monoclinic, C2/c (no. 15), a = 17.867(3) Å, b = 9.170(6) Å, c = 24.651(5) Å, β = 110.837(2)°, Z = 4, V = 3775(3) Å3, R
gt(F) = 0.0323, wR
ref(F
2) = 0.1078, T = 293(2) K.
Collapse
Affiliation(s)
- Jing Li
- School of Chemical and Biological Engineering , Lanzhou Jiaotong University , Lanzhou 730070 , P.R. China
| | - Hao-Ran Jia
- School of Chemical and Biological Engineering , Lanzhou Jiaotong University , Lanzhou 730070 , P.R. China
| | - Jian-Qiang Guo
- School of Chemical and Biological Engineering , Lanzhou Jiaotong University , Lanzhou 730070 , P.R. China
| | - Yin-Xia Sun
- School of Chemical and Biological Engineering , Lanzhou Jiaotong University , Lanzhou 730070 , P.R. China
| |
Collapse
|
24
|
Qais FA, Ahmad I. In vitro interaction of cefotaxime with calf thymus DNA: Insights from spectroscopic, calorimetric and molecular modelling studies. J Pharm Biomed Anal 2017; 149:193-205. [PMID: 29121574 DOI: 10.1016/j.jpba.2017.10.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 10/11/2017] [Accepted: 10/15/2017] [Indexed: 12/20/2022]
Abstract
Cefotaxime is third generation antibiotic with known therapeutic efficacy against bacterial infections including cerebral abscesses and bacterial meningitis. The β-lactam group of drugs are considered safest antibiotics. Many antibiotics directly interact with DNA and alter their expression profile. Thus, it is necessary to understand the binding mode and its relevance to drug activity and toxicity. There is considerably a remarkable focus on deciphering the binding mechanism of these therapeutic agents as DNA is one of the major target for wide range of drugs. Cefotaxime has been extensively studied for its pharmacological properties while its binding mode to DNA has not been explicated so far. In this study, we have unveiled the binding mechanism of cefotaxime to DNA by using various biophysical, thermodynamic and in silico techniques. UV-vis spectroscopy confirmed the formation cefotaxime-DNA complex along with a brief idea about the extent of interaction. Fluorescence spectroscopy yielded the values of various binding constants and explained mode of fluorescence quenching to be static. CD spectroscopy, thermal denaturation, KI quenching and viscosity measurement explained that cefotaxime is groove binder. Measuring the effect of ions on cefotaxime-DNA complex ensured that it does not bind to DNA electrostatically. Dye displacement experiments finally confirmed that cefotaxime binds to the minor groove of DNA. ITC gave the thermodynamic profile of this binding in which negative value of Gibb's free energy change revealed that the process is spontaneous. Molecular modelling finally strengthened our experimental results that cefotaxime was located in curved contour of minor groove of DNA. The findings support on safety of drug and may have a little interference on normal biological functions.
Collapse
Affiliation(s)
- Faizan Abul Qais
- Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, UP 202002, India
| | - Iqbal Ahmad
- Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, UP 202002, India.
| |
Collapse
|
25
|
Yu B, Li CY, Sun YX, Jia HR, Guo JQ, Li J. A new azine derivative colorimetric and fluorescent dual-channel probe for cyanide detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 184:249-254. [PMID: 28505606 DOI: 10.1016/j.saa.2017.05.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 05/07/2017] [Accepted: 05/08/2017] [Indexed: 06/07/2023]
Abstract
A novel azine derivative colorimetric and fluorescent dual-channel probe salicylaldehyde hydrazine-3,5-dibromosalicylaldehyde (1) has been designed, synthesized and characterized. The probe 1 is confirmed to have especial selectivity and good sensitivity on detecting CN- via UV-vis absorption and fluorescence spectrum in aqueous solution (H2O/DMSO, 1:4, v/v). This colorimetric and fluorescent dual-channel probe response to CN- owed to the deprotonation process and established the mechanism by using 1H NMR spectroscopy. Further researches showed that the detection limit of the probe 1 to CN- anions is 8.01×10-9M, significantly lower than the maximum level 1.9×10-6M in potable water from WHO guidelines.
Collapse
Affiliation(s)
- Bin Yu
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730073, PR China
| | - Chun-Yu Li
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730073, PR China
| | - Yin-Xia Sun
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730073, PR China.
| | - Hao-Ran Jia
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730073, PR China
| | - Jian-Qiang Guo
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730073, PR China
| | - Jing Li
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730073, PR China
| |
Collapse
|
26
|
Three different configurations of d 10 complexes based on benzoxazole pyridyl ligand: Synthesis, structures and properties. Polyhedron 2017. [DOI: 10.1016/j.poly.2017.06.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Shakir M, Hanif S, Alam MF, Farhan M, Younus H. Hybrid pharmacophore approach for bio-relevant di-imines based homobimetallic complexes incorporating functionalized dicarboxylates as co-ligands: Synthesis, spectral and structural activity dependent biological insights (in-vitro DNA and HSA binding, antioxidant and cytotoxicity). JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 174:106-125. [PMID: 28756153 DOI: 10.1016/j.jphotobiol.2017.07.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/10/2017] [Accepted: 07/21/2017] [Indexed: 11/25/2022]
Abstract
Synthesis of bio-efficient homobimetallic complexes, [Cu2(L1)2(dipic)](NO3)2.3H2O (1), [Zn2(L1)2(dipic)](NO3)2.4H2O (2), [Cu2(L2)2(oxa)](NO3)2.4H2O (3) and [Zn2(L2)2(oxa)] (NO3)2.5H2O (4) was carried out using Schiff bases [(N1E,N2E)-N1,N2-bis(5-chlorothiophen-2-ylmethylene)-4-chlorobenzene-1,2-diamine; L1] and [(N1E,N2E)-N1,N2-bis(5-chlorofuran-2-ylmethylene)-4-chlorobenzene-1,2-diamine; L2] as main ligands and dicarboxylate moieties of 2,6-pyridine dicarboxylic acid (H2-dipic) and oxalic acid (H2-oxa) as co-ligands, respectively in order to apprehend their structure activity relationships on the basis of pharmacophore hybrid approach. The stoichiometry, geometry, thermal stability, morphology and crystallite size of the compounds were inferred by analytical, spectral (FT-IR, 1H NMR and 13C NMR and Mass), thermal (TGA/DTA), SEM and XRD studies. In-vitro DNA and HSA binding profiles of complexes were analysed by different biophysical measurements. The absorption study divulged that the observed alterations in the physico-chemical properties of complexes upon binding with DNA connoted their intercalative binding mode while fluorescence quenching mechanism was quantified by using Stern Volmer constant (KSV); 1.73×104 (1), 1.47×104 (2), 5.65×103 (3) and 3.60×103M-1 (4) which discerned that hybrid pharmacophore active metal complexes (1 and 2) exhibited efficient quenching effect with Ct-DNA in comparison to complexes (3 and 4) due to greater planarity and extent of conjugation (π-π interactions). The intercalative binding mode of complexes is further supported by competitive displacement assay by using fluorogenic dyes (EtBr and Hoechst 33258). The results of HSA fluorescence study divulged static quenching of the complexes (1-4) with KSV values of 7.24×104 (1), 6.03×104 (2), 5.06×104 (3) and 2.85×104 (4) while Kb values; 1.16×105 (1), 2.01×104 (2), 5.84×103 (3) and 8.60×102 (4) suggested them potent avid binder of HSA. Additionally, comparative estimation of scavenging properties using DPPH, superoxide(O2.-), hydroxyl (OH-) and ABTS method and in-vitro cytotoxicity against different cell lines (MCF-7, HeLa and Hep G2) brought out distinct biopotency of complexes due to diverse structural features and chelation effect.
Collapse
Affiliation(s)
- Mohammad Shakir
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Summaiya Hanif
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Md Fazle Alam
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Mohd Farhan
- Department of Biochemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Hina Younus
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
28
|
Xu Y, Zhang H, Shen K, Mao S, Shi X, Wu H. Four-, five- and six-coordinated transition metal complexes based on naphthalimide Schiff base ligands: Synthesis, crystal structure and properties. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.3902] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Yuling Xu
- School of Chemical and Biological Engineering; Lanzhou Jiaotong University; Lanzhou Gansu 730070 People's Republic of China
| | - Han Zhang
- School of Chemical and Biological Engineering; Lanzhou Jiaotong University; Lanzhou Gansu 730070 People's Republic of China
| | - Kesheng Shen
- School of Chemical and Biological Engineering; Lanzhou Jiaotong University; Lanzhou Gansu 730070 People's Republic of China
| | - Shanshan Mao
- School of Chemical and Biological Engineering; Lanzhou Jiaotong University; Lanzhou Gansu 730070 People's Republic of China
| | - Xinkui Shi
- School of Chemical and Biological Engineering; Lanzhou Jiaotong University; Lanzhou Gansu 730070 People's Republic of China
| | - Huilu Wu
- School of Chemical and Biological Engineering; Lanzhou Jiaotong University; Lanzhou Gansu 730070 People's Republic of China
| |
Collapse
|
29
|
Shokohi-Pour Z, Chiniforoshan H, Sabzalian MR, Esmaeili SA, Momtazi-Borojeni AA. Cobalt (II) complex with novel unsymmetrical tetradentate Schiff base (ON) ligand: in vitro cytotoxicity studies of complex, interaction with DNA/protein, molecular docking studies, and antibacterial activity. J Biomol Struct Dyn 2017; 36:532-549. [PMID: 28271957 DOI: 10.1080/07391102.2017.1287006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
[C20H17N3O2] and cobalt (II) complex [Co(L2)(MeOH)2].ClO4, (L2 = 4-((E)-1-((2-(((E)-pyridin-2-ylmethylene) amino) phenyl) imino) ethyl) benzene-1, 3-diol) novel Schiff base has been synthesiszed and chracterized by Fourier transform infrared, UV-vis, 1H-NMR spectroscopy, and elemental analysis techniques. The interaction of Co(II) complex with DNA and BSA was investigated by electronic absorption spectroscopy, fluorescence spectroscopy, circular dichroism, and thermal denaturation studies. Our experiments indicate that this complex could strongly bind to CT-DNA via minor groove mechanism. In addition, fluorescence spectrometry of BSA with the complex showed that the fluorescence quenching mechanism of BSA was of static type. The complex exhibited significant in vitro cytotoxicity against three human cancer cell lines (JURKAT, SKOV3, and U87). The molecular docking experiment effectively proved the binding of complex to DNA and BSA. Finally, antibacterial assay over gram-positive and gram-negative pathogenic bacterial strains was studied.
Collapse
Affiliation(s)
- Zahra Shokohi-Pour
- a Department of Chemistry , Isfahan University of Technology , Isfahan 84156-83111 , Iran
| | - Hossein Chiniforoshan
- a Department of Chemistry , Isfahan University of Technology , Isfahan 84156-83111 , Iran
| | - Mohammad R Sabzalian
- b Department of Agronomy and Plant Breeding , College of Agriculture, Isfahan University of Technology , Isfahan 84156-83111 , Iran
| | - Seyed-Alireza Esmaeili
- c Student Research Committee, Department of Immunology and Allergy , Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Amir Abbas Momtazi-Borojeni
- d Student Research Committee, Department of Medical Biotechnology , Nanotechnology Research Center, School of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran
| |
Collapse
|
30
|
Qais FA, Abdullah KM, Alam MM, Naseem I, Ahmad I. Interaction of capsaicin with calf thymus DNA: A multi-spectroscopic and molecular modelling study. Int J Biol Macromol 2017; 97:392-402. [PMID: 28104368 DOI: 10.1016/j.ijbiomac.2017.01.022] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/02/2017] [Accepted: 01/04/2017] [Indexed: 01/03/2023]
Abstract
Studying the mode of interaction between small molecules and DNA has received much attention in recent years, as many drugs have been reported to directly interact with DNA thereby regulating the expression of many genes. Capsaicin is a capsaiciniods family phytocompound having many therapeutic applications including diabetic neuropathy, rheumatoid arthritis, prevention of DNA strand breaks and chromosomal aberrations. In this study, we have investigated the interaction of capsaicin with calf thymus DNA using a number of biophysical techniques to get an insight and better understanding of the interaction mechanism. Analysis of UV-vis absorbance spectra and fluorescence spectra indicates the formation of complex between capsaicin and Ct-DNA. Thermodynamic parameters ΔG, ΔH, and ΔS measurements were taken at different temperatures indicated that hydrogen bonding and van der Waal's forces played major role in the binding process. Additional experiments such as iodide quenching, CD spectroscopy suggested that capsaicin possibly binds to the minor groove of the Ct-DNA. These observations were further confirmed by DNA melting studies, viscosity measurements. Molecular docking provided detailed computational interaction of capsaicin with Ct-DNA which proved that capsaicin binds to Ct-DNA at minor groove. Computational molecular docking also revealed the exact sites and groups to which capsaicin interacted.
Collapse
Affiliation(s)
- Faizan Abul Qais
- Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, 202002, India
| | - K M Abdullah
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Md Maroof Alam
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Imrana Naseem
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Iqbal Ahmad
- Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
31
|
Baig U, Gondal MA, Alam MF, Alam M, Wani WA, Younus H. Design, facile synthesis, molecular docking, DNA binding, and cytotoxic activity of polythiophene and polythiophene-titanium(IV) phosphate nanocomposite. INT J POLYM MATER PO 2016. [DOI: 10.1080/00914037.2016.1201825] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Umair Baig
- Center of Excellence for Scientific Research Collaboration with MIT, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
- Laser Research Group, Physics Department & Center of Excellence in Nanotechnology King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - M. A. Gondal
- Center of Excellence for Scientific Research Collaboration with MIT, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
- Laser Research Group, Physics Department & Center of Excellence in Nanotechnology King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Md. Fazle Alam
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Mahboob Alam
- Division of Bioscience, Dongguk University, Gyeongju, Republic of Korea
| | - Waseem A. Wani
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Hina Younus
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
32
|
Novel multinuclear transition metal(II) complexes based on an asymmetric Salamo-type ligand: Syntheses, structure characterizations and fluorescent properties. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2016.01.034] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Bhattacharya P, Mandal SM, Basak A. Synthesis of DNA-Intercalating 6H-Benzo[c]chromen-6-one Derivatives through a Strategic Combination of Garratt-Braverman and Minisci Acyloxylation Reactions. European J Org Chem 2016. [DOI: 10.1002/ejoc.201501529] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
34
|
Hassan MF, Rauf A. Synthesis and multi-spectroscopic DNA binding study of 1,3,4-oxadiazole and 1,3,4-thiadiazole derivatives of fatty acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 153:510-6. [PMID: 26414553 DOI: 10.1016/j.saa.2015.09.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 09/03/2015] [Accepted: 09/10/2015] [Indexed: 05/03/2023]
Abstract
A facile and convenient synthesis of a series of fatty acid derivatives of 1,3,4-oxadiazole and 1,3,4-thiadiazole has been described. The key step of this protocol is the cyclization of acyl thiosemicarbazides via iodobenzene diacetate and methanesulfonic acid under mild conditions. The newly synthesized compounds were characterized by FT-IR, (1)HNMR, (13)CNMR and mass spectral study. The binding affinity of 5-(pentadecyl)-N-propenyl-1,3,4-oxadiazol-2-amine (3a) and 5-(heptadecyl)-2-amino-1,3,4-thiadiazole (6a) with CT-DNA has been evaluated by UV, fluorescence, Circular Dichroism (CD) and thermal denaturation studies. It has been found that these small and planer heteroaromatic compounds are capable of binding to the minor groove region of DNA.
Collapse
Affiliation(s)
- Mohammad F Hassan
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Abdul Rauf
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India.
| |
Collapse
|
35
|
Singla P, Luxami V, Paul K. Triazine–benzimidazole conjugates: synthesis, spectroscopic and molecular modelling studies for interaction with calf thymus DNA. RSC Adv 2016. [DOI: 10.1039/c5ra24001h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Triazine–benzimidazole analogues with different substitutions of primary and secondary amines as well as aryl groups were synthesized and studied their interactions with calf thymus DNA.
Collapse
Affiliation(s)
- Prinka Singla
- School of Chemistry and Biochemistry
- Thapar University
- Patiala-147004
- India
| | - Vijay Luxami
- School of Chemistry and Biochemistry
- Thapar University
- Patiala-147004
- India
| | - Kamaldeep Paul
- School of Chemistry and Biochemistry
- Thapar University
- Patiala-147004
- India
| |
Collapse
|
36
|
Islam MS, Karim MR, Boadi W, Falekun S, Mirza AH. Biological Evaluation of New Schiff Bases: Synthesized from 4-Amino-3,5-dimethyl-1,2,4-triazole, Phenathroline and Bipyridine Dicarboxaldehydes. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/abc.2016.66016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Potočňák I, Vranec P, Farkasová V, Sabolová D, Vataščinová M, Kudláčová J, Radojević ID, Čomić LR, Markovic BS, Volarevic V, Arsenijevic N, Trifunović SR. Low-dimensional compounds containing bioactive ligands. Part VI: Synthesis, structures, in vitro DNA binding, antimicrobial and anticancer properties of first row transition metal complexes with 5-chloro-quinolin-8-ol. J Inorg Biochem 2015; 154:67-77. [PMID: 26600190 DOI: 10.1016/j.jinorgbio.2015.10.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 10/12/2015] [Accepted: 10/28/2015] [Indexed: 01/19/2023]
Abstract
A series of new 3d metal complexes with 5-chloro-quinolin-8-ol (ClQ), [Mn(ClQ)2] (1), [Fe(ClQ)3] (2), [Co(ClQ)2(H2O)2] (3), [Ni(ClQ)2(H2O)2] (4), [Cu(ClQ)2] (5), [Zn(ClQ)2(H2O)2] (6), [Mn(ClQ)3]·DMF (7) and [Co(ClQ)3]·DMF·(EtOH)0.35 (8) (DMF=N,N-dimethylformamide), has been synthesized and characterized by elemental analysis, IR spectroscopy and TG-DTA thermal analysis. X-ray structure analysis of 7 and 8 revealed that these molecular complexes contain three chelate ClQ molecules coordinated to the central atoms in a deformed octahedral geometry and free space between the complex units is filled by solvated DMF and ethanol molecules. Antimicrobial activity of 1-6 was tested by determining the minimum inhibitory concentration and minimum microbicidal concentration against 12 strains of bacteria and 5 strains of fungi. The intensity of antimicrobial action varies depending on the group of microorganism and can be sorted: 1>ClQ>6>3/4>2>5. Complexes 1-6 exhibit high cytotoxic activity against MDA-MB, HCT-116 and A549 cancer cell lines. Among them, complex 2 is significantly more cytotoxic against MDA-MB cells than cisplatin at all tested concentrations and is not cytotoxic against control mesenchymal stem cells indicating that this complex seems to be a good candidate for future pharmacological evaluation. Interaction of 1-6 with DNA was investigated using UV-VIS spectroscopy, fluorescence spectroscopy and agarose gel electrophoresis. The binding studies indicate that 1-6 can interact with CT-DNA through intercalation; complex 2 has the highest binding affinity. Moreover, complexes 1-6 inhibit the catalytic activity of topoisomerase I.
Collapse
Affiliation(s)
- Ivan Potočňák
- Department of Inorganic Chemistry, Institute of Chemistry, P. J. Šafárik University, Moyzesova 11, SK-04154 Košice, Slovak Republic.
| | - Peter Vranec
- Department of Inorganic Chemistry, Institute of Chemistry, P. J. Šafárik University, Moyzesova 11, SK-04154 Košice, Slovak Republic
| | - Veronika Farkasová
- Department of Inorganic Chemistry, Institute of Chemistry, P. J. Šafárik University, Moyzesova 11, SK-04154 Košice, Slovak Republic
| | - Danica Sabolová
- Department of Biochemistry, Institute of Chemistry, P. J. Šafárik University, Moyzesova 11, SK-04154 Košice, Slovak Republic
| | - Michaela Vataščinová
- Department of Biochemistry, Institute of Chemistry, P. J. Šafárik University, Moyzesova 11, SK-04154 Košice, Slovak Republic
| | - Júlia Kudláčová
- Department of Biochemistry, Institute of Chemistry, P. J. Šafárik University, Moyzesova 11, SK-04154 Košice, Slovak Republic
| | - Ivana D Radojević
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Ljiljana R Čomić
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Bojana Simovic Markovic
- Centre for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica, 34000 Kragujevac, Serbia
| | - Vladislav Volarevic
- Centre for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica, 34000 Kragujevac, Serbia
| | - Nebojsa Arsenijevic
- Centre for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica, 34000 Kragujevac, Serbia
| | - Srećko R Trifunović
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| |
Collapse
|
38
|
Synthesis and characterization of transition metal complexes of a hexadentate N4O2 donor Schiff base ligand: X-ray crystal structures of the copper(II) and zinc(II) complexes and their antibacterial properties. TRANSIT METAL CHEM 2015. [DOI: 10.1007/s11243-015-9966-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
39
|
Dacarbazine as a minor groove binder of DNA: Spectroscopic, biophysical and molecular docking studies. Int J Biol Macromol 2015; 79:193-200. [DOI: 10.1016/j.ijbiomac.2015.04.055] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 04/23/2015] [Accepted: 04/25/2015] [Indexed: 11/19/2022]
|
40
|
Rehman SU, Sarwar T, Husain MA, Ishqi HM, Tabish M. Studying non-covalent drug-DNA interactions. Arch Biochem Biophys 2015; 576:49-60. [PMID: 25951786 DOI: 10.1016/j.abb.2015.03.024] [Citation(s) in RCA: 252] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 03/09/2015] [Accepted: 03/28/2015] [Indexed: 12/14/2022]
Abstract
Drug-DNA interactions have been extensively studied in the recent past. Various techniques have been employed to decipher these interactions. DNA is a major target for a wide range of drugs that may specifically or non-specifically interact with DNA and affect its functions. Interaction between small molecules and DNA are of two types, covalent interactions and non-covalent interactions. Three major modes of non-covalent interactions are electrostatic interactions, groove binding and intercalative binding. This review primarily focuses on discussing various techniques used to study non-covalent interactions that occur between drugs and DNA. Additionally, we report several techniques that may be employed to analyse the binding mode of a drug with DNA. These techniques provide data that are reliable and simple to interpret.
Collapse
Affiliation(s)
- Sayeed Ur Rehman
- Department of Biochemistry, Faculty of Life Sciences, A.M. University, Aligarh, U.P. 202002, India
| | - Tarique Sarwar
- Department of Biochemistry, Faculty of Life Sciences, A.M. University, Aligarh, U.P. 202002, India
| | - Mohammed Amir Husain
- Department of Biochemistry, Faculty of Life Sciences, A.M. University, Aligarh, U.P. 202002, India
| | - Hassan Mubarak Ishqi
- Department of Biochemistry, Faculty of Life Sciences, A.M. University, Aligarh, U.P. 202002, India
| | - Mohammad Tabish
- Department of Biochemistry, Faculty of Life Sciences, A.M. University, Aligarh, U.P. 202002, India.
| |
Collapse
|
41
|
Sarwar T, Husain MA, Rehman SU, Ishqi HM, Tabish M. Multi-spectroscopic and molecular modelling studies on the interaction of esculetin with calf thymus DNA. MOLECULAR BIOSYSTEMS 2015; 11:522-31. [DOI: 10.1039/c4mb00636d] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Minor groove binding of esculetin with Ct-DNA was established by a series of in vitro experiments and in silico analyses.
Collapse
Affiliation(s)
- Tarique Sarwar
- Department of Biochemistry
- Faculty of Life Sciences
- A.M. University
- Aligarh
- India
| | | | - Sayeed Ur Rehman
- Department of Biochemistry
- Faculty of Life Sciences
- A.M. University
- Aligarh
- India
| | | | - Mohammad Tabish
- Department of Biochemistry
- Faculty of Life Sciences
- A.M. University
- Aligarh
- India
| |
Collapse
|
42
|
Wang Y, Mao JW, Ding C, Pan ZQ, Li JF, Zhou H. Crystal structures, cyclic voltammetry and DNA binding of two mononuclear nickel(II) complexes. TRANSIT METAL CHEM 2013. [DOI: 10.1007/s11243-013-9779-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Dong WK, Zhang LS, Sun YX, Zhao MM, Li G, Dong XY. Synthesis, crystal structure and spectroscopic properties of a supramolecular zinc(II) complex with N2O2 coordination sphere. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 121:324-329. [PMID: 24263129 DOI: 10.1016/j.saa.2013.10.072] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 10/10/2013] [Accepted: 10/17/2013] [Indexed: 06/02/2023]
Abstract
A new hexa-coordinated zinc(II) complex, namely [ZnL(H2O)2]n, with N2O2 coordination sphere (H2L=4,4'-dibromo-6,6'-dichloro-2,2'-[ethylenedioxybis(nitrilomethylidyne)]diphenol) has been synthesized and structurally characterized by elemental analyses, IR, UV-vis spectra and TG-DTA analyses, etc. Crystallographic data are monoclinic, space group P2(1)/c, a=24.634(2)Å, b=10.144(1)Å, c=7.9351(6)Å, β=91.371(2)°, V=1982.4(3)Å(3), Dc=2.099 g/cm(3), Z=4. The zinc(II) complex exhibits a slightly distorted octahedral geometry with halogen-substituted Salen-type bisoxime forming the basal N2O2 coordination sphere and two oxygen atoms from two coordinated water molecules in the axial position. The hydrogen-bonding and π-π stacking interactions have stabilized the zinc(II) complex molecules to form a self-assembling infinite dual metal-water chain-like structure with the nearest Zn⋯Zn distance of 4.954(4)Å.
Collapse
Affiliation(s)
- Wen-Kui Dong
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China.
| | - Li-Sha Zhang
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China
| | - Yin-Xia Sun
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China
| | - Meng-Meng Zhao
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China
| | - Gang Li
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China
| | - Xiu-Yan Dong
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China
| |
Collapse
|
44
|
Sirajuddin M, Ali S, Badshah A. Drug–DNA interactions and their study by UV–Visible, fluorescence spectroscopies and cyclic voltametry. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 124:1-19. [DOI: 10.1016/j.jphotobiol.2013.03.013] [Citation(s) in RCA: 756] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 03/26/2013] [Accepted: 03/28/2013] [Indexed: 11/26/2022]
|
45
|
Wang Y, Xiao W, Mao J, Zhou H, Pan Z. Phosphate ester hydrolysis and DNA binding capacity of two new dinuclear Ni(II) complexes. J Mol Struct 2013. [DOI: 10.1016/j.molstruc.2012.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
46
|
Dong XY, Sun YX, Wang L, Li L. Synthesis and Structure of a Penta- and Hexa-Coordinated Tri-Nuclear Cobalt(II) Complex. JOURNAL OF CHEMICAL RESEARCH 2012. [DOI: 10.3184/174751912x13366711594575] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The tri-nuclear cobalt(II) complex, [(CoL)2(μ-OAc)2Co]·2CHCl3 (H2L = 5,5'-dimethoxy-2,2'-[(ethylene)dioxybis(nitrilome thylidyne)]diphenol), has been synthesised. Its X-ray structure shows it to contain two acetate ions coordinating to the three cobalt(II) atoms through Co–O–C–O–Co bridges, and four μ-phenoxo-oxygen atoms from two [CoL] chelates also coordinating to the central cobalt(II) atom. The complex possesses two penta- and one hexa-coordinated cobalt atoms. The crystal packing of the CoII complex shows that a 2D-layer supramolecular network parallel to the ab-plane is formed through intermolecular C–H···O and C–H···Cl hydrogen bonding interactions.
Collapse
Affiliation(s)
- Xiu-Yan Dong
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, 730070, P. R. China
| | - Yin-Xia Sun
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, 730070, P. R. China
| | - Li Wang
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, 730070, P. R. China
| | - Li Li
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, 730070, P. R. China
| |
Collapse
|
47
|
Dong WK, Sun YX, Liu GH, Li L, Dong XY, Gao XH. Two Supramolecular Nickel(II) Complexes: Syntheses, Crystal Structures and Solvent Effects. Z Anorg Allg Chem 2012. [DOI: 10.1002/zaac.201200074] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
48
|
Dong WK, Wang G, Gong SS, Tong JF, Sun YX, Gao XH. Synthesis, structural characterization and substituent effects of two copper(II) complexes with benzaldehyde ortho-oxime ligands. TRANSIT METAL CHEM 2012. [DOI: 10.1007/s11243-012-9585-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|