1
|
Longo L, Taghavi S, Ghedini E, Menegazzo F, Di Michele A, Cruciani G, Signoretto M. Selective Hydrogenation of 5-Hydroxymethylfurfural to 1-Hydroxy-2,5-hexanedione by Biochar-Supported Ru Catalysts. CHEMSUSCHEM 2022; 15:e202200437. [PMID: 35394696 DOI: 10.1002/cssc.202200437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/06/2022] [Indexed: 06/14/2023]
Abstract
The development of sustainable and efficient catalysts -namely Ru supported on activated biochars- is carried out for the selective hydrogenation of 5-hydroxymethylfurfural (HMF) to 1-hydroxy-2,5-hexanedione (HHD). Activated biochars obtained from pyrolysis and steam-based physical activation of two different biomasses from animal (leather tannery waste; ALw ) and vegetal (hazelnut shells; AHSw ) origins show completely different chemical, textural, and morphological properties. Compared to ALw , after impregnation with 0.5 wt % Ru, AHSw , with inner micro-mesochannels and cavities and higher layer stacking disorder, leads to better trapping and anchoring of Ru nanoparticles on the catalyst and a suitable Ru single crystal dispersion. This leads to a highly active Ru/AHSw catalyst in the proposed reaction, giving more than 80 % selectivity to HHD and full HMF conversion at 100 °C with 30 bar H2 for 3 h. Ru/AHSw also shows promising performance compared to a commercial Ru/C catalyst.
Collapse
Affiliation(s)
- Lilia Longo
- CATMAT Lab, Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice and INSTM RUVe, via Torino 155, 30172, Venezia Mestre, Italy
| | - Somayeh Taghavi
- CATMAT Lab, Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice and INSTM RUVe, via Torino 155, 30172, Venezia Mestre, Italy
| | - Elena Ghedini
- CATMAT Lab, Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice and INSTM RUVe, via Torino 155, 30172, Venezia Mestre, Italy
| | - Federica Menegazzo
- CATMAT Lab, Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice and INSTM RUVe, via Torino 155, 30172, Venezia Mestre, Italy
| | - Alessandro Di Michele
- Department of Physics and Geology, University of Perugia, Via Pascoli, 06123, Perugia, Italy
| | - Giuseppe Cruciani
- Department of Physics and Earth Science, University of Ferrara, Via Saragat 1, 44122, Ferrara, Italy
| | - Michela Signoretto
- CATMAT Lab, Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice and INSTM RUVe, via Torino 155, 30172, Venezia Mestre, Italy
| |
Collapse
|
2
|
Decarpigny C, Noël S, Addad A, Ponchel A, Monflier E, Bleta R. Robust Ruthenium Catalysts Supported on Mesoporous Cyclodextrin-Templated TiO 2-SiO 2 Mixed Oxides for the Hydrogenation of Levulinic Acid to γ-Valerolactone. Int J Mol Sci 2021; 22:1721. [PMID: 33572104 PMCID: PMC7915766 DOI: 10.3390/ijms22041721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 11/17/2022] Open
Abstract
In this paper, we present a versatile template-directed colloidal self-assembly method for the fabrication in aqueous phase of composition-tuned mesoporous RuO2@TiO2-SiO2 catalysts. Randomly methylated β-cyclodextrin/Pluronic F127 supramolecular assemblies were used as soft templates, TiO2 colloids as building blocks, and tetraethyl orthosilicate as a silica source. Catalysts were characterized at different stages of their synthesis using dynamic light scattering, N2-adsorption analysis, powder X-ray diffraction, temperature programmed reduction, high-resolution transmission electron microscopy, high-angle annular bright-field and dark-field scanning transmission electron microscopy, together with EDS elemental mapping. Results revealed that both the supramolecular template and the silica loading had a strong impact on the pore characteristics and crystalline structure of the mixed oxides, as well as on the morphology of the RuO2 nanocrystals. Their catalytic performance was then evaluated in the aqueous phase hydrogenation of levulinic acid (LA) to γ-valerolactone (GVL) under mild conditions (50 °C, 50 bar H2). Results showed that the cyclodextrin-derived catalyst displayed almost quantitative LA conversion and 99% GVL yield in less than one hour. Moreover, this catalyst could be reused at least five times without loss of activity. This work offers an effective approach to the utilization of cyclodextrins for engineering the surface morphology of Ru nanocrystals and pore characteristics of TiO2-based materials for catalytic applications in hydrogenation reactions.
Collapse
Affiliation(s)
- Cédric Decarpigny
- University Artois, CNRS, Centrale Lille, ENSCL, Univ. Lille, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-62300 Lens, France; (C.D.); (S.N.); (A.P.); (E.M.)
| | - Sébastien Noël
- University Artois, CNRS, Centrale Lille, ENSCL, Univ. Lille, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-62300 Lens, France; (C.D.); (S.N.); (A.P.); (E.M.)
| | - Ahmed Addad
- University Lille, CNRS, INRA, ENSCL, UMR 8207-UMET-Unité Matériaux et Transformations, F-59000 Lille, France;
| | - Anne Ponchel
- University Artois, CNRS, Centrale Lille, ENSCL, Univ. Lille, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-62300 Lens, France; (C.D.); (S.N.); (A.P.); (E.M.)
| | - Eric Monflier
- University Artois, CNRS, Centrale Lille, ENSCL, Univ. Lille, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-62300 Lens, France; (C.D.); (S.N.); (A.P.); (E.M.)
| | - Rudina Bleta
- University Artois, CNRS, Centrale Lille, ENSCL, Univ. Lille, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-62300 Lens, France; (C.D.); (S.N.); (A.P.); (E.M.)
| |
Collapse
|
3
|
Kumar A, Bal R, Srivastava R. Modulation of Ru and Cu nanoparticle contents over CuAlPO-5 for synergistic enhancement in the selective reduction and oxidation of biomass-derived furan based alcohols and carbonyls. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00593f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cu–Ru NP decorated CuAlPO-5 catalysts with low contents of Ru exhibit excellent activity and selectivity in the reduction and the oxidation of biomass-derived platform chemicals.
Collapse
Affiliation(s)
- Abhinav Kumar
- Catalysis Research Laboratory
- Department of Chemistry
- Indian Institute of Technology Ropar
- Rupnagar
- India
| | - Rajaram Bal
- Nanocatalysis Area Conversion and Catalysis Division
- CSIR-Indian Institute of Petroleum
- Dehradun
- India
| | - Rajendra Srivastava
- Catalysis Research Laboratory
- Department of Chemistry
- Indian Institute of Technology Ropar
- Rupnagar
- India
| |
Collapse
|
4
|
Wang J, Qiao W, Zhao X, Chen M, Peng Q, Cui K, Wei X, Yao Y, Hou Z. Tetranuclear ruthenium clusters anchored on polyoxometalates catalyze the hydrogenation of methyl levulinate in water. NEW J CHEM 2021. [DOI: 10.1039/d1nj03423e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The tungstoaluminate-anchored ruthenium cluster catalyst is efficient and recyclable for the selective hydrogenation of methyl levulinate (ML) to gamma-valerolactone or methyl 4-hydroxypentanoate.
Collapse
Affiliation(s)
- Jiajia Wang
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wencheng Qiao
- Physics Department and Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, China
| | - Xiuge Zhao
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Manyu Chen
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qingpo Peng
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kai Cui
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xinjia Wei
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yefeng Yao
- Physics Department and Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, China
| | - Zhenshan Hou
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
5
|
|
6
|
Rodiansono, Astuti MD, Mustikasari K, Husain S, Sutomo. Recent progress in the direct synthesis of γ-valerolactone from biomass-derived sugars catalyzed by RANEY® Ni–Sn alloy supported on aluminium hydroxide. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01356k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Direct synthesis of γ-valerolactone from sugars using RANEY® nickel–tin alloy supported on aluminum hydroxide catalysts under mild reaction conditions produced an outstanding yield up to 74.9%.
Collapse
Affiliation(s)
- Rodiansono
- Department of Chemistry
- Faculty of Mathematics and Natural Sciences
- Lambung Mangkurat University
- Banjarbaru
- 70714 Indonesia
| | - Maria Dewi Astuti
- Department of Chemistry
- Faculty of Mathematics and Natural Sciences
- Lambung Mangkurat University
- Banjarbaru
- 70714 Indonesia
| | - Kamilia Mustikasari
- Department of Chemistry
- Faculty of Mathematics and Natural Sciences
- Lambung Mangkurat University
- Banjarbaru
- 70714 Indonesia
| | - Sadang Husain
- Department of Physics
- Faculty of Mathematics and Natural Sciences
- Lambung Mangkurat University
- Banjarbaru
- 70714 Indonesia
| | - Sutomo
- Department of Pharmacy
- Faculty of Mathematics and Natural Sciences
- Lambung Mangkurat University
- Banjarbaru
- 70714 Indonesia
| |
Collapse
|
7
|
Rapid Microwave-Assisted Polyol Synthesis of TiO2-Supported Ruthenium Catalysts for Levulinic Acid Hydrogenation. Catalysts 2019. [DOI: 10.3390/catal9090748] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
One wt% Ru/TiO2 catalysts prepared by a one-pot microwave-assisted polyol method have been shown to be highly active for Levulinic acid hydrogenation to γ-Valerolactone. Preparation temperature, microwave irradiation time and choice of Ru precursor were found to have a significant effect on catalyst activity. In the case of Ru(acac)3-derived catalysts, increasing temperature and longer irradiation times increased catalyst activity to a maximum LA conversion of 69%. Conversely, for catalysts prepared using RuCl3, shorter preparation times and lower temperatures yielded more active catalysts, with a maximum LA conversion of 67%. Catalysts prepared using either precursor were found to contain highly dispersed nanoparticles <3 nm in diameter. XPS analysis of the most and least active catalysts shows that the catalyst surface is covered in a layer of insoluble carbon with surface concentrations exceeding 40% in some cases. This can be attributed to the formation of large condensation oligomers from the reaction between the solvent, ethylene glycol and its oxidation products, as evidenced by the presence of C-O and C = O functionality on the catalyst surface.
Collapse
|
8
|
Wojciechowska J, Jędrzejczyk M, Grams J, Keller N, Ruppert AM. Enhanced Production of γ-Valerolactone with an Internal Source of Hydrogen on Ca-Modified TiO 2 Supported Ru Catalysts. CHEMSUSCHEM 2019; 12:639-650. [PMID: 30350463 DOI: 10.1002/cssc.201801974] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/12/2018] [Indexed: 06/08/2023]
Abstract
Calcium-modified titania supported Ru catalysts were synthesized and evaluated for the hydrogenation of levulinic acid with formic acid as an internal hydrogen source and water as a green solvent. A new elegant photoassisted method was developed for the synthesis of uniform-size and evenly distributed Ru particles on the titania surface. Compared with the counterpart catalysts prepared by classical wet impregnation, enhanced levulinic acid conversion and γ-valerolactone yield were obtained and further improved through modification of the support by introduction of calcium into the titania support. This synthesis approach resulted in a change of the surface and bulk properties of the support, namely a decrease in the anatase crystallite size and the formation of a new calcium titanate phase. As a consequence, the properties of the catalysts were modified, and smaller ruthenium particles that had stronger interactions with the support were obtained. This affected the strength of the CO adsorption on the catalyst surface and facilitated the reaction performance. The optimum size of Ru particles that allowed for most efficient levulinic acid conversion was established.
Collapse
Affiliation(s)
- Joanna Wojciechowska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Łódź University of Technology, ul. Żeromskiego 116, 90-924, Łódź, Poland
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), CNRS, University of Strasbourg, 25 rue Becquerel, 67087, Strasbourg, France
| | - Marcin Jędrzejczyk
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Łódź University of Technology, ul. Żeromskiego 116, 90-924, Łódź, Poland
| | - Jacek Grams
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Łódź University of Technology, ul. Żeromskiego 116, 90-924, Łódź, Poland
| | - Nicolas Keller
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), CNRS, University of Strasbourg, 25 rue Becquerel, 67087, Strasbourg, France
| | - Agnieszka M Ruppert
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Łódź University of Technology, ul. Żeromskiego 116, 90-924, Łódź, Poland
| |
Collapse
|