1
|
Hu L, Wrubel JA, Baez-Cotto CM, Intia F, Park JH, Kropf AJ, Kariuki N, Huang Z, Farghaly A, Amichi L, Saha P, Tao L, Cullen DA, Myers DJ, Ferrandon MS, Neyerlin KC. A scalable membrane electrode assembly architecture for efficient electrochemical conversion of CO 2 to formic acid. Nat Commun 2023; 14:7605. [PMID: 37989737 PMCID: PMC10663610 DOI: 10.1038/s41467-023-43409-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023] Open
Abstract
The electrochemical reduction of carbon dioxide to formic acid is a promising pathway to improve CO2 utilization and has potential applications as a hydrogen storage medium. In this work, a zero-gap membrane electrode assembly architecture is developed for the direct electrochemical synthesis of formic acid from carbon dioxide. The key technological advancement is a perforated cation exchange membrane, which, when utilized in a forward bias bipolar membrane configuration, allows formic acid generated at the membrane interface to exit through the anode flow field at concentrations up to 0.25 M. Having no additional interlayer components between the anode and cathode this concept is positioned to leverage currently available materials and stack designs ubiquitous in fuel cell and H2 electrolysis, enabling a more rapid transition to scale and commercialization. The perforated cation exchange membrane configuration can achieve >75% Faradaic efficiency to formic acid at <2 V and 300 mA/cm2 in a 25 cm2 cell. More critically, a 55-hour stability test at 200 mA/cm2 shows stable Faradaic efficiency and cell voltage. Technoeconomic analysis is utilized to illustrate a path towards achieving cost parity with current formic acid production methods.
Collapse
Affiliation(s)
- Leiming Hu
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Jacob A Wrubel
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Carlos M Baez-Cotto
- Materials Science Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Fry Intia
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Jae Hyung Park
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA
| | - Arthur Jeremy Kropf
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA
| | - Nancy Kariuki
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA
| | - Zhe Huang
- Catalytic Carbon Transformation & Scale-Up Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Ahmed Farghaly
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA
| | - Lynda Amichi
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Prantik Saha
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Ling Tao
- Catalytic Carbon Transformation & Scale-Up Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - David A Cullen
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Deborah J Myers
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA
| | - Magali S Ferrandon
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA
| | - K C Neyerlin
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, CO, USA.
| |
Collapse
|
2
|
Zhang G, Wang Y, Ma Y, Zhang H, Zheng Y. Boosting Electrocatalytic Oxidation of Formic Acid on Ir(IV)-Doped PdAg Alloy Nanodendrites with Sub-5 nm Branches. Molecules 2023; 28:molecules28093670. [PMID: 37175080 PMCID: PMC10180118 DOI: 10.3390/molecules28093670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/15/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
The formic acid oxidation reaction (FAOR) represents an important class of small organic molecule oxidation and is central to the practical application of fuel cells. In this study, we report the fabrication of Ir(IV)-doped PdAg alloy nanodendrites with sub-5 nm branches via stepwise synthesis in which the precursors of Pd and Ag were co-reduced, followed by the addition of IrCl3 to conduct an in situ galvanic replacement reaction. When serving as the electrocatalyst for the FAOR in an acidic medium, Ir(IV) doping unambiguously enhanced the activity of PdAg alloy nanodendrites and improved the reaction kinetics and long-term stability. In particular, the carbon-supported PdAgIr nanodendrites exhibited a prominent mass activity with a value of 1.09 A mgPd-1, which is almost 2.0 times and 2.7 times that of their PdAg and Pd counterparts, and far superior to that of commercial Pt/C. As confirmed by the means of the DFT simulations, this improved electrocatalytic performance stems from the reduced overall barrier in the oxidation of formic acid into CO2 during the FAOR and successful d-band tuning, together with the stabilization of Pd atoms. The current study opens a new avenue for engineering Pd-based trimetallic nanocrystals with versatile control over the morphology and composition, shedding light on the design of advanced fuel cell electrocatalysts.
Collapse
Affiliation(s)
- Gongguo Zhang
- School of Chemistry, Chemical Engineering, and Materials, Jining University, Qufu 273155, China
| | - Yingying Wang
- Health Management Department, Shandong Vocational College of Light Industry, Zibo 255300, China
| | - Yanyun Ma
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, China
| | - Haifeng Zhang
- School of Chemistry, Chemical Engineering, and Materials, Jining University, Qufu 273155, China
| | - Yiqun Zheng
- School of Chemistry, Chemical Engineering, and Materials, Jining University, Qufu 273155, China
| |
Collapse
|
3
|
Formic Acid Electrooxidation on Palladium Nano-Layers Deposited onto Pt(111): Investigation of the Substrate Effect. Electrocatalysis (N Y) 2023. [DOI: 10.1007/s12678-023-00816-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
4
|
Shi Y, Schimmenti R, Zhu S, Venkatraman K, Chen R, Chi M, Shao M, Mavrikakis M, Xia Y. Solution-Phase Synthesis of PdH 0.706 Nanocubes with Enhanced Stability and Activity toward Formic Acid Oxidation. J Am Chem Soc 2022; 144:2556-2568. [PMID: 35108015 DOI: 10.1021/jacs.1c10199] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Palladium is one of the few metals capable of forming hydrides, with the catalytic properties being dependent on the elemental composition and spatial distribution of H atoms in the lattice. Herein, we report a facile method for the complete transformation of Pd nanocubes into a stable phase made of PdH0.706 by treating them with aqueous hydrazine at a concentration as low as 9.2 mM. Using formic acid oxidation (FAO) as a model reaction, we systematically investigated the structure-catalytic property relationship of the resultant nanocubes with different degrees of hydride formation. The current density at 0.4 V was enhanced by four times when the nanocubes were completely converted from Pd to PdH0.706. On the basis of a set of slab models with PdH(100) overlayers on Pd(100), we conducted density functional theory calculations to demonstrate that the degree of hybrid formation could influence both the activity and selectivity toward FAO by modulating the relative stability of formate (HCOO) and carboxyl (COOH) intermediates. This work provides a viable strategy for augmenting the performance of Pd-based catalysts toward various reactions without altering the loading of this scarce metal.
Collapse
Affiliation(s)
- Yifeng Shi
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Roberto Schimmenti
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Shangqian Zhu
- Department of Chemical and Biological Engineering and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, PR China
| | - Kartik Venkatraman
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Ruhui Chen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Miaofang Chi
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Minhua Shao
- Department of Chemical and Biological Engineering and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, PR China
| | - Manos Mavrikakis
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Younan Xia
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| |
Collapse
|
5
|
PT-BI Co-Deposit Shell on AU Nanoparticle Core: High Performance and Long Durability for Formic Acid Oxidation. Catalysts 2021. [DOI: 10.3390/catal11091049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This work presents the catalysts of Pt-Bi shells on Au nanoparticle cores and Pt overlayers on the Pt-Bi shells toward formic acid oxidation (FAO). Pt and Bi were co-deposited on Au nanoparticles (Au NP) via the irreversible adsorption method using a mixed precursor solution of Pt and Bi ions, and the amount of the co-deposits was controlled with the repetition of the deposition cycle. Rinsing of the co-adsorbed ionic layers of Pt and Bi with a H2SO4 solution selectively removed the Bi ions to leave Pt-rich and Bi-lean (<0.4 atomic %) co-deposits on Au NP (Pt-Bi/Au NP), conceptually similar to de-alloying. Additional Pt was deposited over Pt-Bi/Au NPs (Pt/Pt-Bi/Au NPs) to manipulate further the physicochemical properties of Pt-Bi/Au NPs. Transmission electron microscopy revealed the core–shell structures of Pt-Bi/Au NPs and Pt/Pt-Bi/Au NPs, whose shell thickness ranged from roughly four to six atomic layers. Moreover, the low crystallinity of the Pt-containing shells was confirmed with X-ray diffraction. Electrochemical studies showed that the surfaces of Pt-Bi/Au NPs were characterized by low hydrogen adsorption abilities, which increased after the deposition of additional Pt. Durability tests were carried out with 1000 voltammetric cycles between −0.26 and 0.4 V (versus Ag/AgCl) in a solution of 1.0 M HCOOH + 0.1 M H2SO4. The initial averaged FAO performance on Pt-Bi/Au NPs and Pt/Pt-Bi/Au NPs (0.11 ± 0.01 A/mg, normalized to the catalyst weight) was higher than that of a commercial Pt nanoparticle catalyst (Pt NP, 0.023 A/mg) by a factor of ~5, mainly due to enhancement of dehydrogenation and suppression of dehydration. The catalytic activity of Pt/Pt-Bi/Au NP (0.04 ± 0.01 A/mg) in the 1000th cycle was greater than that of Pt-Bi/Au NP (0.026 ± 0.003 A/mg) and that of Pt NP (0.006 A/mg). The reason for the higher durability was suggested to be the low mobility of surface Pt atoms on the investigated catalysts.
Collapse
|
6
|
Akça A, Karaman O. Electrocatalytic Decomposition of Formic Acid Catalyzed by M-Embedded Graphene (M = Ni and Cu): A DFT Study. Top Catal 2021. [DOI: 10.1007/s11244-021-01499-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Folkman SJ, González-Cobos J, Giancola S, Sánchez-Molina I, Galán-Mascarós JR. Benchmarking Catalysts for Formic Acid/Formate Electrooxidation. Molecules 2021; 26:4756. [PMID: 34443343 PMCID: PMC8398888 DOI: 10.3390/molecules26164756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022] Open
Abstract
Energy production and consumption without the use of fossil fuels are amongst the biggest challenges currently facing humankind and the scientific community. Huge efforts have been invested in creating technologies that enable closed carbon or carbon neutral fuel cycles, limiting CO2 emissions into the atmosphere. Formic acid/formate (FA) has attracted intense interest as a liquid fuel over the last half century, giving rise to a plethora of studies on catalysts for its efficient electrocatalytic oxidation for usage in fuel cells. However, new catalysts and catalytic systems are often difficult to compare because of the variability in conditions and catalyst parameters examined. In this review, we discuss the extensive literature on FA electrooxidation using platinum, palladium and non-platinum group metal-based catalysts, the conditions typically employed in formate electrooxidation and the main electrochemical parameters for the comparison of anodic electrocatalysts to be applied in a FA fuel cell. We focused on the electrocatalytic performance in terms of onset potential and peak current density obtained during cyclic voltammetry measurements and on catalyst stability. Moreover, we handpicked a list of the most relevant examples that can be used for benchmarking and referencing future developments in the field.
Collapse
Affiliation(s)
- Scott J. Folkman
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Paisos Catalans, 16, 43007 Tarragona, Spain; (S.G.); (I.S.-M.); (J.R.G.-M.)
| | - Jesús González-Cobos
- Institut de Recherches sur la Catalyse et l’Environnement de Lyon, UMR 5256, CNRS, Université Claude Bernard Lyon 1, 2 Avenue A. Einstein, 69626 Villeurbanne, France
| | - Stefano Giancola
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Paisos Catalans, 16, 43007 Tarragona, Spain; (S.G.); (I.S.-M.); (J.R.G.-M.)
| | - Irene Sánchez-Molina
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Paisos Catalans, 16, 43007 Tarragona, Spain; (S.G.); (I.S.-M.); (J.R.G.-M.)
| | - José Ramón Galán-Mascarós
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Paisos Catalans, 16, 43007 Tarragona, Spain; (S.G.); (I.S.-M.); (J.R.G.-M.)
- ICREA, Pg. Llu’ıs Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
8
|
Elnabawy AO, Herron JA, Liang Z, Adzic RR, Mavrikakis M. Formic Acid Electrooxidation on Pt or Pd Monolayer on Transition-Metal Single Crystals: A First-Principles Structure Sensitivity Analysis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ahmed O. Elnabawy
- Department of Chemical and Biological Engineering, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Jeffrey A. Herron
- Department of Chemical and Biological Engineering, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Zhixiu Liang
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Radoslav R. Adzic
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Manos Mavrikakis
- Department of Chemical and Biological Engineering, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|