1
|
Broome JA, Nguyen NP, Baumung CRE, Chen VC, Bushnell EAC. Gaining Insight into the Catalytic Mechanism of the R132H IDH1 Mutant: A Synergistic DFT Cluster and Experimental Investigation. Biochemistry 2024; 63:2682-2691. [PMID: 39318042 DOI: 10.1021/acs.biochem.4c00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Human isocitrate dehydrogenase 1 (IDH1) is an enzyme that is found in humans that plays a critical role in aerobic metabolism. As a part of the citric acid cycle, IDH1 becomes responsible for catalyzing the oxidative decarboxylation of isocitrate to form α-ketoglutarate (αKG), with nicotinamide adenine dinucleotide phosphate (NADP+) as a cofactor. Strikingly, mutations of the IDH1 enzyme have been discovered in several cancers including glioblastoma multiforme (GBM), a highly aggressive form of brain cancer. It has been experimentally determined that single-residue IDH1 mutations occur at a very high frequency in GBM. Specifically, the IDH1 R132H mutation is known to produce (D)2-hydroxyglutarate (2HG), a recognized oncometabolite. Using the previously determined catalytic mechanism of IDH1, a DFT QM model was developed to study the mechanistic properties of IDH1 R132H compared to wild type enzyme. Validating these insights, biochemical in vitro assays of metabolites produced by mutant vs wild type enzymes were measured and compared. From the results discussed herein, we discuss the mechanistic impact of mutations in IDH1 on its ability to catalyze the formation of αKG and 2HG.
Collapse
Affiliation(s)
- Joshua A Broome
- Department of Chemistry, Brandon University, 270-18th Street, Brandon, Manitoba R7A 6A9, Canada
| | - Nguyen P Nguyen
- Department of Chemistry, Brandon University, 270-18th Street, Brandon, Manitoba R7A 6A9, Canada
| | - Cassidy R E Baumung
- Department of Chemistry, Brandon University, 270-18th Street, Brandon, Manitoba R7A 6A9, Canada
| | - Vincent C Chen
- Department of Chemistry, Brandon University, 270-18th Street, Brandon, Manitoba R7A 6A9, Canada
| | - Eric A C Bushnell
- Department of Chemistry, Brandon University, 270-18th Street, Brandon, Manitoba R7A 6A9, Canada
| |
Collapse
|
2
|
Nguyen N, Forstater JH, McIntosh JA. Decarboxylation in Natural Products Biosynthesis. JACS AU 2024; 4:2715-2745. [PMID: 39211618 PMCID: PMC11350588 DOI: 10.1021/jacsau.4c00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 09/04/2024]
Abstract
Decarboxylation reactions are frequently found in the biosynthesis of primary and secondary metabolites. Decarboxylase enzymes responsible for these transformations operate via diverse mechanisms and act on a large variety of substrates, making them appealing in terms of biotechnological applications. This Perspective focuses on the occurrence of decarboxylation reactions in natural product biosynthesis and provides a perspective on their applications in biocatalysis for fine chemicals and pharmaceuticals.
Collapse
|
3
|
Jia K, Sun H, Zhou Y, Zhang W. Biosynthesis of isonitrile lipopeptides. Curr Opin Chem Biol 2024; 81:102470. [PMID: 38788523 PMCID: PMC11323250 DOI: 10.1016/j.cbpa.2024.102470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/25/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024]
Abstract
Isonitrile lipopeptides discovered from Actinobacteria have attracted wide attention due to their fascinating biosynthetic pathways and relevance to the virulence of many human pathogens including Mycobacterium tuberculosis. Specifically, the identification of the new class of isonitrile-forming enzymes that belong to non-heme iron (II) and α-ketoglutarate dependent dioxygenases has intrigued several research groups to investigate their catalytic mechanism. Here we summarize the recent studies on the biosynthesis of isonitrile lipopeptides from Streptomyces and Mycobacterium. The latest research on the core and tailoring enzymes involved in the pathway as well as the isonitrile metabolic enzymes are discussed in this review.
Collapse
Affiliation(s)
- Kaimin Jia
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA 94720, United States; California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, CA 94720, United States
| | - Helen Sun
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA 94720, United States
| | - Yiyan Zhou
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, United States
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA 94720, United States; California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, CA 94720, United States.
| |
Collapse
|
4
|
Ali HS, de Visser SP. QM/MM Study Into the Mechanism of Oxidative C=C Double Bond Cleavage by Lignostilbene-α,β-Dioxygenase. Chemistry 2024; 30:e202304172. [PMID: 38373118 DOI: 10.1002/chem.202304172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/29/2024] [Accepted: 02/19/2024] [Indexed: 02/21/2024]
Abstract
The enzymatic biosynthesis of fragrance molecules from lignin fragments is an important reaction in biotechnology for the sustainable production of fine chemicals. In this work we investigated the biosynthesis of vanillin from lignostilbene by a nonheme iron dioxygenase using QM/MM and tested several suggested proposals via either an epoxide or dioxetane intermediate. Binding of dioxygen to the active site of the protein results in the formation of an iron(II)-superoxo species with lignostilbene cation radical. The dioxygenase mechanism starts with electrophilic attack of the terminal oxygen atom of the superoxo group on the central C=C bond of lignostilbene, and the second-coordination sphere effects in the substrate binding pocket guide the reaction towards dioxetane formation. The computed mechanism is rationalized with thermochemical cycles and valence bond schemes that explain the electron transfer processes during the reaction mechanism. Particularly, the polarity of the protein and the local electric field and dipole moments enable a facile electron transfer and an exergonic dioxetane formation pathway.
Collapse
Affiliation(s)
- Hafiz Saqib Ali
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Sam P de Visser
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| |
Collapse
|
5
|
Klyukin IN, Kolbunova AV, Novikov AS, Nelyubin AV, Zhdanov AP, Kubasov AS, Selivanov NA, Bykov AY, Zhizhin KY, Kuznetsov NT. Synthesis of Disubstituted Carboxonium Derivatives of Closo-Decaborate Anion [2,6-B 10H 8O 2CC 6H 5] -: Theoretical and Experimental Study. Molecules 2023; 28:1757. [PMID: 36838745 PMCID: PMC9966448 DOI: 10.3390/molecules28041757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
A comprehensive study focused on the preparation of disubstituted carboxonium derivatives of closo-decaborate anion [2,6-B10H8O2CC6H5]- was carried out. The proposed synthesis of the target product was based on the interaction between the anion [B10H11]- and benzoic acid C6H5COOH. It was shown that the formation of this product proceeds stepwise through the formation of a mono-substituted product [B10H9OC(OH)C6H5]-. In addition, an alternative one-step approach for obtaining the target derivative is postulated. The structure of tetrabutylammonium salts of carboxonium derivative ((C4H9)4N)[2,6-B10H8O2CC6H5] was established with the help of X-ray structure analysis. The reaction pathway for the formation of [2,6-B10H8O2CC6H5]- was investigated with the help of density functional theory (DFT) calculations. This process has an electrophile induced nucleophilic substitution (EINS) mechanism, and intermediate anionic species play a key role. Such intermediates have a structure in which one boron atom coordinates two hydrogen atoms. The regioselectivity for the process of formation for the 2,6-isomer was also proved by theoretical calculations. Generally, in the experimental part, the simple and available approach for producing disubstituted carboxonium derivative was introduced, and the mechanism of this process was investigated with the help of theoretical calculations. The proposed approach can be applicable for the preparation of a wide range of disubstituted derivatives of closo-borate anions.
Collapse
Affiliation(s)
- Ilya N. Klyukin
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii Pr. 31, 117907 Moscow, Russia
| | - Anastasia V. Kolbunova
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii Pr. 31, 117907 Moscow, Russia
| | - Alexander S. Novikov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya nab. 7–9, 199034 Saint Petersburg, Russia
- Research Institute of Chemistry, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| | - Alexey V. Nelyubin
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii Pr. 31, 117907 Moscow, Russia
| | - Andrey P. Zhdanov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii Pr. 31, 117907 Moscow, Russia
| | - Alexey S. Kubasov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii Pr. 31, 117907 Moscow, Russia
| | - Nikita A. Selivanov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii Pr. 31, 117907 Moscow, Russia
| | - Alexander Yu. Bykov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii Pr. 31, 117907 Moscow, Russia
| | - Konstantin Yu. Zhizhin
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii Pr. 31, 117907 Moscow, Russia
| | - Nikolay T. Kuznetsov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii Pr. 31, 117907 Moscow, Russia
| |
Collapse
|
6
|
Ushimaru R, Abe I. Unusual Dioxygen-Dependent Reactions Catalyzed by Nonheme Iron Enzymes in Natural Product Biosynthesis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Richiro Ushimaru
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- ACT-X, Japan Science and Technology Agency (JST), Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
7
|
Nandy A, Adamji H, Kastner DW, Vennelakanti V, Nazemi A, Liu M, Kulik HJ. Using Computational Chemistry To Reveal Nature’s Blueprints for Single-Site Catalysis of C–H Activation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Aditya Nandy
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Husain Adamji
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - David W. Kastner
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Vyshnavi Vennelakanti
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Azadeh Nazemi
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mingjie Liu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J. Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
8
|
Del Rio Flores A, Barber CC, Narayanamoorthy M, Gu D, Shen Y, Zhang W. Biosynthesis of Isonitrile- and Alkyne-Containing Natural Products. Annu Rev Chem Biomol Eng 2022; 13:1-24. [PMID: 35236086 PMCID: PMC9811556 DOI: 10.1146/annurev-chembioeng-092120-025140] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Natural products are a diverse class of biologically produced compounds that participate in fundamental biological processes such as cell signaling, nutrient acquisition, and interference competition. Unique triple-bond functionalities like isonitriles and alkynes often drive bioactivity and may serve as indicators of novel chemical logic and enzymatic machinery. Yet, the biosynthetic underpinnings of these groups remain only partially understood, constraining the opportunity to rationally engineer biomolecules with these functionalities for applications in pharmaceuticals, bioorthogonal chemistry, and other value-added chemical processes. Here, we focus our review on characterized biosynthetic pathways for isonitrile and alkyne functionalities, their bioorthogonal transformations, and prospects for engineering their biosynthetic machinery for biotechnological applications.
Collapse
Affiliation(s)
- Antonio Del Rio Flores
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, USA; ,
| | - Colin C Barber
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA;
| | | | - Di Gu
- Department of Chemistry, University of California, Berkeley, California, USA; , ,
| | - Yuanbo Shen
- Department of Chemistry, University of California, Berkeley, California, USA; , ,
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, USA; ,
- Chan Zuckerberg Biohub, San Francisco, California, USA
| |
Collapse
|
9
|
Del Rio Flores A, Kastner DW, Du Y, Narayanamoorthy M, Shen Y, Cai W, Vennelakanti V, Zill NA, Dell LB, Zhai R, Kulik HJ, Zhang W. Probing the Mechanism of Isonitrile Formation by a Non-Heme Iron(II)-Dependent Oxidase/Decarboxylase. J Am Chem Soc 2022; 144:5893-5901. [PMID: 35254829 PMCID: PMC8986608 DOI: 10.1021/jacs.1c12891] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The isonitrile moiety is an electron-rich functionality that decorates various bioactive natural products isolated from diverse kingdoms of life. Isonitrile biosynthesis was restricted for over a decade to isonitrile synthases, a family of enzymes catalyzing a condensation reaction between l-Trp/l-Tyr and ribulose-5-phosphate. The discovery of ScoE, a non-heme iron(II) and α-ketoglutarate-dependent dioxygenase, demonstrated an alternative pathway employed by nature for isonitrile installation. Biochemical, crystallographic, and computational investigations of ScoE have previously been reported, yet the isonitrile formation mechanism remains obscure. In the present work, we employed in vitro biochemistry, chemical synthesis, spectroscopy techniques, and computational simulations that enabled us to propose a plausible molecular mechanism for isonitrile formation. Our findings demonstrate that the ScoE reaction initiates with C5 hydroxylation of (R)-3-((carboxymethyl)amino)butanoic acid to generate 1, which undergoes dehydration, presumably mediated by Tyr96 to synthesize 2 in a trans configuration. (R)-3-isocyanobutanoic acid is finally generated through radical-based decarboxylation of 2, instead of the common hydroxylation pathway employed by this enzyme superfamily.
Collapse
Affiliation(s)
- Antonio Del Rio Flores
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, United States 94720
| | - David W. Kastner
- Department of Bioengineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States 02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States 02139
| | - Yongle Du
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, United States 94720
| | - Maanasa Narayanamoorthy
- Department of Chemistry, University of California, Berkeley, California, United States 94720
| | - Yuanbo Shen
- Department of Chemistry, University of California, Berkeley, California, United States 94720
| | - Wenlong Cai
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, United States 94720
| | - Vyshnavi Vennelakanti
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States 02139
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States 02139
| | - Nicholas A. Zill
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, United States 94720
| | - Luisa B. Dell
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, United States 94720
| | - Rui Zhai
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, United States 94720
| | - Heather J. Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States 02139
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, United States 94720
- Chan Zuckerberg Biohub, San Francisco, California, United States 94158
| |
Collapse
|
10
|
Chen TY, Zheng Z, Zhang X, Chen J, Cha L, Tang Y, Guo Y, Zhou J, Wang B, Liu HW, Chang WC. Deciphering the Reaction Pathway of Mononuclear Iron Enzyme-Catalyzed N≡C Triple Bond Formation in Isocyanide Lipopeptide and Polyketide Biosynthesis. ACS Catal 2022; 12:2270-2279. [PMID: 35992736 PMCID: PMC9390461 DOI: 10.1021/acscatal.1c04869] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Despite the diversity of reactions catalyzed by 2-oxoglutarate-dependent nonheme iron (Fe/2OG) enzymes identified in recent years, only a limited number of these enzymes have been investigated in mechanistic detail. In particular, several Fe/2OG-dependent enzymes capable of catalyzing isocyanide formation have been reported. While the glycine moiety has been identified as a biosynthon for the isocyanide group, how the actual conversion is effected remains obscure. To elucidate the catalytic mechanism, we characterized two previously unidentified (AecA and AmcA) along with two known (ScoE and SfaA) Fe/2OG-dependent enzymes that catalyze N≡C triple bond installation using synthesized substrate analogues and potential intermediates. Our results indicate that isocyanide formation likely entails a two-step sequence involving an imine intermediate that undergoes decarboxylation-assisted desaturation to yield the isocyanide product. Results obtained from the in vitro experiments are further supported by mutagenesis, the product-bound enzyme structure, and in silico analysis.
Collapse
Affiliation(s)
| | | | | | - Jinfeng Chen
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Lide Cha
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Yijie Tang
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jiahai Zhou
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hung-wen Liu
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States; Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Wei-chen Chang
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
11
|
Wong HPH, Mokkawes T, de Visser SP. Can the isonitrile biosynthesis enzyme ScoE assist with the biosynthesis of isonitrile groups in drug molecules? A computational study. Phys Chem Chem Phys 2022; 24:27250-27262. [DOI: 10.1039/d2cp03409c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Computational studies show that the isonitrile synthesizing enzyme ScoE can catalyse the conversion of γ-Gly substituents in substrates to isonitrile. This enables efficient isonitrile substitution into target molecules such as axisonitrile-1.
Collapse
Affiliation(s)
- Henrik P. H. Wong
- Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, UK
- Department of Chemical Engineering, Oxford Road, Manchester M13 9PL, UK
| | - Thirakorn Mokkawes
- Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, UK
- Department of Chemical Engineering, Oxford Road, Manchester M13 9PL, UK
| | - Sam P. de Visser
- Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, UK
- Department of Chemical Engineering, Oxford Road, Manchester M13 9PL, UK
| |
Collapse
|