1
|
Tarquini G, Pagliari L, Ermacora P, Musetti R, Firrao G. Trigger and Suppression of Antiviral Defenses by Grapevine Pinot Gris Virus (GPGV): Novel Insights into Virus-Host Interaction. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1010-1023. [PMID: 33983824 DOI: 10.1094/mpmi-04-21-0078-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Grapevine Pinot gris virus (GPGV) is an emerging trichovirus that has been putatively associated with a novel grapevine disease known as grapevine leaf mottling and deformation (GLMD). Yet the role of GPGV in GLMD disease is poorly understood, since it has been detected both in symptomatic and symptomless grapevines. We exploited a recently constructed GPGV infectious clone (pRI::GPGV-vir) to induce an antiviral response in Nicotiana benthamiana plants. In silico prediction of virus-derived small interfering RNAs and gene expression analyses revealed the involvement of DCL4, AGO5, and RDR6 genes during GPGV infection, suggesting the activation of the posttranscriptional gene-silencing (PTGS) pathway as a plant antiviral defense. PTGS suppression assays in transgenic N. benthamiana 16c plants revealed the ability of the GPGV coat protein to suppress RNA silencing. This work provides novel insights on the interaction between GPGV and its host, revealing the ability of the virus to trigger and suppress antiviral RNA silencing.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Giulia Tarquini
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, Udine I-33100, Italy
| | - Laura Pagliari
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, Udine I-33100, Italy
| | - Paolo Ermacora
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, Udine I-33100, Italy
| | - Rita Musetti
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, Udine I-33100, Italy
| | - Giuseppe Firrao
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, Udine I-33100, Italy
| |
Collapse
|
2
|
De La Torre CM, Finer JJ. The intron and 5' distal region of the soybean Gmubi promoter contribute to very high levels of gene expression in transiently and stably transformed tissues. PLANT CELL REPORTS 2015; 34:111-20. [PMID: 25292438 DOI: 10.1007/s00299-014-1691-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/29/2014] [Accepted: 09/30/2014] [Indexed: 06/03/2023]
Abstract
KEY MESSAGE An extended version of an intron-containing soybean polyubiquitin promoter gave very high levels of gene expression using three different validation tools. The intron-containing Glycine max polyubiquitin promoter (Gmubi) is able to regulate expression levels five times higher than the widely used CaMV35S promoter. In this study, eleven Gmubi derivatives were designed and evaluated to determine which regions contributed to the high levels of gene expression, observed with this promoter. Derivative constructs regulating GFP were evaluated using transient expression in lima bean cotyledons and stable expression in soybean hairy roots. With both expression systems, removal of the intron in the 5'UTR led to reduced levels of gene expression suggesting a role of the intron in promoter activity. Promoter constructs containing an internal intron duplication and upstream translocations of the intron resulted in higher and similar expression levels to Gmubi, respectively, indicating the presence of enhancers within the intron. Evaluation of 5' distal extensions of the Gmubi promoter resulted in significantly higher levels of GFP expression, suggesting the presence of upstream regulatory elements. A twofold increase in promoter strength was obtained when Gmubi was extended 1.5 kb upstream to generate GmubiXL (2.4 kb total length). In stably transformed soybean plants containing GFP regulated by CaMV35S, Gmubi and GmubiXL, the GmubiXL promoter clearly produced the highest levels of gene expression, with especially high GFP fluorescence in the vascular tissue and root tips. Use of GmubiXL leads to very high levels of gene expression in soybean and represents a native soybean promoter, which may be useful for regulating transgene expression for both basic and applied research.
Collapse
Affiliation(s)
- Carola M De La Torre
- Department of Horticulture and Crop Science, OARDC/The Ohio State University, 1680 Madison Ave, Wooster, OH, 44691, USA,
| | | |
Collapse
|
3
|
Avesani L, Merlin M, Gecchele E, Capaldi S, Brozzetti A, Falorni A, Pezzotti M. Comparative analysis of different biofactories for the production of a major diabetes autoantigen. Transgenic Res 2014; 23:281-91. [PMID: 24142387 PMCID: PMC3951962 DOI: 10.1007/s11248-013-9749-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 08/31/2013] [Indexed: 01/13/2023]
Abstract
The 65-kDa isoform of human glutamic acid decarboxylase (hGAD65) is a major diabetes autoantigen that can be used for the diagnosis and (more recently) the treatment of autoimmune diabetes. We previously reported that a catalytically-inactive version (hGAD65mut) accumulated to tenfold higher levels than its active counterpart in transgenic tobacco plants, providing a safe and less expensive source of the protein compared to mammalian production platforms. Here we show that hGAD65mut is also produced at higher levels than hGAD65 by transient expression in Nicotiana benthamiana (using either the pK7WG2 or MagnICON vectors), in insect cells using baculovirus vectors, and in bacterial cells using an inducible-expression system, although the latter system is unsuitable because hGAD65mut accumulates within inclusion bodies. The most productive of these platforms was the MagnICON system, which achieved yields of 78.8 μg/g fresh leaf weight (FLW) but this was substantially less than the best-performing elite transgenic tobacco plants, which reached 114.3 μg/g FLW after six generations of self-crossing. The transgenic system was found to be the most productive and cost-effective although the breeding process took 3 years to complete. The MagnICON system was less productive overall, but generated large amounts of protein in a few days. Both plant-based systems were therefore advantageous over the baculovirus-based production platform in our hands.
Collapse
Affiliation(s)
- Linda Avesani
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Matilde Merlin
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Elisa Gecchele
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Stefano Capaldi
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Alberto Falorni
- Department of Internal Medicine, University of Perugia, Perugia, Italy
| | - Mario Pezzotti
- Department of Biotechnology, University of Verona, Verona, Italy
| |
Collapse
|
4
|
Hanson MR, Sattarzadeh A. Fluorescent labeling and confocal microscopic imaging of chloroplasts and non-green plastids. Methods Mol Biol 2014; 1132:125-43. [PMID: 24599850 DOI: 10.1007/978-1-62703-995-6_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
While chlorophyll has served as an excellent label for plastids in green tissue, the development of fluorescent proteins has allowed their ready visualization in all tissues of the plants, revealing new features of their morphology and motility. Gene regulatory sequences in plastid transgenes can be optimized through the use of fluorescent protein reporters. Fluorescent labeling of plastids simultaneously with other subcellular locations reveals dynamic interactions and mutant phenotypes. Transient expression of fluorescent protein fusions is particularly valuable to determine whether or not a protein of unknown function is targeted to the plastid. Particle bombardment and agroinfiltration methods described here are convenient for imaging fluorescent proteins in plant organelles. With proper selection of fluorophores for labeling the components of the plant cell, confocal microscopy can produce extremely informative images at high resolution at depths not feasible by standard epifluorescence microscopy.
Collapse
Affiliation(s)
- Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | | |
Collapse
|
5
|
Takagi K, Nishizawa K, Hirose A, Kurauchi T, Senda M, Masuta C, Ishimoto M. Seed coat pigmentation in transgenic soybean expressing the silencing suppressor 2b gene of Cucumber mosaic virus. PLANT CELL REPORTS 2013; 32:1903-12. [PMID: 24022064 DOI: 10.1007/s00299-013-1502-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 08/21/2013] [Accepted: 08/26/2013] [Indexed: 06/02/2023]
Abstract
KEY MESSAGE Soybean expressing the Cucumber mosaic virus 2b gene manifests seed coat pigmentation due to suppression of endogenous RNA silencing but no other morphological abnormality. This gene may help prevent transgene silencing. RNA silencing is an important mechanism for gene regulation and antiviral defense in plants. It is also responsible for transgene silencing, however, and thus hinders the establishment of transgenic plants. The 2b protein of Cucumber mosaic virus (CMV) functions as a suppressor of RNA silencing and therefore might prove beneficial for stabilization of transgene expression. We have now generated transgenic soybean that harbors the 2b gene of a CMV-soybean strain under the control of a constitutive promoter to investigate the effects of 2b expression. No growth abnormality was apparent in 2b transgenic plants, although the seed coat was pigmented in several of the transgenic lines. Genes for chalcone synthase (CHS), a key enzyme of the flavonoid pathway, are posttranscriptionally silenced by the inhibitor (I) locus in nonpigmented (yellow) soybean seeds. The levels of CHS mRNA and CHS small interfering RNA in strongly pigmented 2b transgenic seed coats were higher and lower, respectively, than those in the seed coat of a control transgenic line. The expression level of 2b also correlated with the extent of seed coat pigmentation. On the other hand, introduction of the 2b gene together with the DsRed2 gene into somatic embryos prevented the time-dependent decrease in transient DsRed2 expression. Our results indicate that the 2b gene alone is able to suppress RNA silencing of endogenous CHS genes regulated by the I locus, and that 2b is of potential utility for stabilization of transgene expression in soybean without detrimental effects other than seed coat pigmentation.
Collapse
|
6
|
Haikonen T, Rajamäki ML, Valkonen JPT. Improved silencing suppression and enhanced heterologous protein expression are achieved using an engineered viral helper component proteinase. J Virol Methods 2013; 193:687-92. [PMID: 23933077 DOI: 10.1016/j.jviromet.2013.07.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 07/20/2013] [Accepted: 07/22/2013] [Indexed: 12/14/2022]
Abstract
RNA silencing limits transient expression of heterologous proteins in plants. Co-expression of viral silencing suppressor proteins can increase and prolong protein expression, but highly efficient silencing suppressors may stress plant tissue and be detrimental to protein yields. Little is known whether silencing suppression could be improved without harm to plant tissues. This study reports development of enhanced silencing suppressors by engineering the helper component proteinase (HCpro) of Potato virus A (PVA). Mutations were introduced to a short region of HCpro (positions 330-335 in PVA HCpro), which is hypervariable among potyviruses. Three out of the four HCpro mutants suppressed RNA silencing more efficiently and sustained expression of co-expressed jellyfish green fluorescent protein for a longer time than wild-type HCpro in agroinfiltrated leaves of Nicotiana benthamiana. Leaf tissues remained healthy-looking without any visible signs of stress.
Collapse
Affiliation(s)
- T Haikonen
- Department of Agricultural Sciences, P.O. Box 27, University of Helsinki, FIN-00014 Helsinki, Finland
| | | | | |
Collapse
|
7
|
Gao SJ, Damaj MB, Park JW, Beyene G, Buenrostro-Nava MT, Molina J, Wang X, Ciomperlik JJ, Manabayeva SA, Alvarado VY, Rathore KS, Scholthof HB, Mirkov TE. Enhanced transgene expression in sugarcane by co-expression of virus-encoded RNA silencing suppressors. PLoS One 2013; 8:e66046. [PMID: 23799071 PMCID: PMC3682945 DOI: 10.1371/journal.pone.0066046] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 04/30/2013] [Indexed: 01/12/2023] Open
Abstract
Post-transcriptional gene silencing is commonly observed in polyploid species and often poses a major limitation to plant improvement via biotechnology. Five plant viral suppressors of RNA silencing were evaluated for their ability to counteract gene silencing and enhance the expression of the Enhanced Yellow Fluorescent Protein (EYFP) or the β-glucuronidase (GUS) reporter gene in sugarcane, a major sugar and biomass producing polyploid. Functionality of these suppressors was first verified in Nicotiana benthamiana and onion epidermal cells, and later tested by transient expression in sugarcane young leaf segments and protoplasts. In young leaf segments co-expressing a suppressor, EYFP reached its maximum expression at 48-96 h post-DNA introduction and maintained its peak expression for a longer time compared with that in the absence of a suppressor. Among the five suppressors, Tomato bushy stunt virus-encoded P19 and Barley stripe mosaic virus-encoded γb were the most efficient. Co-expression with P19 and γb enhanced EYFP expression 4.6-fold and 3.6-fold in young leaf segments, and GUS activity 2.3-fold and 2.4-fold in protoplasts compared with those in the absence of a suppressor, respectively. In transgenic sugarcane, co-expression of GUS and P19 suppressor showed the highest accumulation of GUS levels with an average of 2.7-fold more than when GUS was expressed alone, with no detrimental phenotypic effects. The two established transient expression assays, based on young leaf segments and protoplasts, and confirmed by stable transgene expression, offer a rapid versatile system to verify the efficiency of RNA silencing suppressors that proved to be valuable in enhancing and stabilizing transgene expression in sugarcane.
Collapse
Affiliation(s)
- San-Ji Gao
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Mona B. Damaj
- Department of Plant Pathology and Microbiology, Texas A&M AgriLife Research, Weslaco, Texas, United States of America
| | - Jong-Won Park
- Department of Plant Pathology and Microbiology, Texas A&M AgriLife Research, Weslaco, Texas, United States of America
| | - Getu Beyene
- Institute for International Crop Improvement, Donald Danforth Plant Science Center, Saint Louis, Missouri, United States of America
| | | | - Joe Molina
- Department of Plant Pathology and Microbiology, Texas A&M AgriLife Research, Weslaco, Texas, United States of America
| | - Xiaofeng Wang
- Department of Plant Pathology, Physiology and Weed Science, VirginiaTech University, Blacksburg, Virginia, United States of America
| | - Jessica J. Ciomperlik
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, United States of America
| | - Shuga A. Manabayeva
- National Center for Biotechnology of the Republic of Kazakhstan, Astana, Republic of Kazakhstan
| | - Veria Y. Alvarado
- Stoller Enterprises, Inc., Norman E. Borlaug Center for Southern Crop Improvement, Texas A&M University, College Station, Texas, United States of America
| | - Keerti S. Rathore
- Laboratory for Crop Transformation, Institute for Plant Genomics and Biotechnology, Norman E. Borlaug Center for Southern Crop Improvement, Texas A&M University, College Station, Texas, United States of America
| | - Herman B. Scholthof
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, United States of America
| | - T. Erik Mirkov
- Department of Plant Pathology and Microbiology, Texas A&M AgriLife Research, Weslaco, Texas, United States of America
| |
Collapse
|
8
|
Piotrzkowski N, Schillberg S, Rasche S. Tackling heterogeneity: a leaf disc-based assay for the high-throughput screening of transient gene expression in tobacco. PLoS One 2012; 7:e45803. [PMID: 23029251 PMCID: PMC3448687 DOI: 10.1371/journal.pone.0045803] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 08/24/2012] [Indexed: 11/18/2022] Open
Abstract
Transient Agrobacterium-mediated gene expression assays for Nicotiana tabacum (N. tabacum) are frequently used because they facilitate the comparison of multiple expression constructs regarding their capacity for maximum recombinant protein production. However, for three model proteins, we found that recombinant protein accumulation (rpa) was significantly influenced by leaf age and leaf position effects. The ratio between the highest and lowest amount of protein accumulation (max/min ratio) was found to be as high as 11. Therefore, construct-based impacts on the rpa level that are less than 11-fold will be masked by background noise. To address this problem, we developed a leaf disc-based screening assay and infiltration device that allows the rpa level in a whole tobacco plant to be reliably and reproducibly determined. The prototype of the leaf disc infiltration device allows 14 Agrobacterium-mediated infiltration events to be conducted in parallel. As shown for three model proteins, the average max/min rpa ratio was reduced to 1.4 using this method, which allows for a sensitive comparison of different genetic elements affecting recombinant protein expression.
Collapse
Affiliation(s)
- Natalia Piotrzkowski
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany
| | - Stefan Rasche
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany
| |
Collapse
|
9
|
Stephan D, Slabber C, George G, Ninov V, Francis KP, Burger JT. Visualization of plant viral suppressor silencing activity in intact leaf lamina by quantitative fluorescent imaging. PLANT METHODS 2011; 7:25. [PMID: 21812965 PMCID: PMC3163223 DOI: 10.1186/1746-4811-7-25] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 08/03/2011] [Indexed: 05/26/2023]
Abstract
BACKGROUND Transient expression of proteins in plants has become a favoured method over the production of stably transformed plants because, in addition to enabling high protein yields, it is both fast and easy to apply. An enhancement of transient protein expression can be achieved by plant virus-encoded RNA silencing suppressor proteins. Since viral suppressor proteins differ in their efficiency to enhance transient protein expression in plants, we developed a whole-leaf green fluorescent protein (GFP)-based imaging assay to quantitatively assess suppressor protein activity. RESULTS In a transient GFP-expression assay using wild-type and GFP-transgenic N. benthamiana, addition of the plant viral suppressors Beet mild yellowing virus (BMYV-IPP) P0 or Plum pox virus (PPV) HC-Pro was shown to increase fluorescent protein expression 3-4-fold, 7 days post inoculation (dpi) when compared to control plants. In contrast, in agroinfiltrated patches without suppressor activity, near complete silencing of the GFP transgene was observed in the transgenic N. benthamiana at 21 dpi. Both co-infiltrated suppressors significantly enhanced GFP expression over time, with HC-Pro co-infiltrations leading to higher short term GFP fluorescence (at 7 dpi) and P0 giving higher long term GFP fluorescence (at 21 dpi). Additionally, in contrast to HC-Pro co-infiltrations, an area of complete GFP silencing was observed at the edge of P0 co-infiltrated areas. CONCLUSIONS Fluorescence imaging of whole intact leaves proved to be an easy and effective method for spatially and quantitatively observing viral suppressor efficiency in plants. This suppressor assay demonstrates that plant viral suppressors greatly enhanced transient GFP expression, with P0 showing a more prolonged suppressor activity over time than HC-Pro. Both suppressors could prove to be ideal candidates for enhancing target protein expression in plants.
Collapse
Affiliation(s)
- Dirk Stephan
- Department of Genetics, Stellenbosch University, Private Bag X1, 7602 Matieland, South Africa
| | - Coba Slabber
- Department of Genetics, Stellenbosch University, Private Bag X1, 7602 Matieland, South Africa
| | - Gavin George
- Department of Genetics, Stellenbosch University, Private Bag X1, 7602 Matieland, South Africa
| | - Victor Ninov
- Caliper Life Sciences, 2061 Challenger Drive, Alameda, CA 94501, USA
| | - Kevin P Francis
- Caliper Life Sciences, 2061 Challenger Drive, Alameda, CA 94501, USA
| | - Johan T Burger
- Department of Genetics, Stellenbosch University, Private Bag X1, 7602 Matieland, South Africa
| |
Collapse
|
10
|
Beyene G, Buenrostro-Nava MT, Damaj MB, Gao SJ, Molina J, Mirkov TE. Unprecedented enhancement of transient gene expression from minimal cassettes using a double terminator. PLANT CELL REPORTS 2011; 30:13-25. [PMID: 20967448 DOI: 10.1007/s00299-010-0936-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 09/16/2010] [Accepted: 09/24/2010] [Indexed: 05/24/2023]
Abstract
The potential of using vector-free minimal gene cassettes (MGCs) with a double terminator for the enhancement and stabilization of transgene expression was tested in sugarcane biolistic transformation. The MGC system used consisted of the enhanced yellow fluorescent protein (EYFP) reporter gene driven by the maize ubiquitin-1 (Ubi) promoter and a single or double terminator from nopaline synthase (Tnos) or/and Cauliflower mosaic virus 35S (35ST). Transient EYFP expression from Tnos or 35ST single terminator MGC was very low and unstable, typically peaking early (8-16 h) and diminishing rapidly (48-72 h) after bombardment. Addition of a ~260 bp vector sequence (VS) to the single MGC downstream of Tnos (Tnos + VS) or 35ST (35ST + VS) enhanced EYFP expression by 1.25- to 25-fold. However, a much more significant increase in EYFP expression was achieved when the VS in 35ST + VS was replaced by Tnos to generate a 35ST-Tnos double terminator MGC, reaching its maximum at 24 h post-bombardment. The enhanced EYFP expression from the double terminator MGC was maintained for a long period of time (168 h), resulting in an overall increase of 5- to 65-fold and 10- to 160-fold as compared to the 35ST and Tnos single terminator MGCs, respectively. The efficiency of the double terminator MGC in enhancing EYFP expression was also demonstrated in sorghum and tobacco, suggesting that the underlying mechanism is highly conserved among monocots and dicots. Our results also suggest the involvement of posttranscriptional gene silencing in the reduced and unstable transgene expression from single terminator MGCs in plants.
Collapse
Affiliation(s)
- Getu Beyene
- Department of Plant Pathology and Microbiology, Texas AgriLife Research, Texas A&M System, Weslaco, TX 78596-8344, USA
| | | | | | | | | | | |
Collapse
|
11
|
Hernandez-Garcia CM, Bouchard RA, Rushton PJ, Jones ML, Chen X, Timko MP, Finer JJ. High level transgenic expression of soybean (Glycine max) GmERF and Gmubi gene promoters isolated by a novel promoter analysis pipeline. BMC PLANT BIOLOGY 2010; 10:237. [PMID: 21050446 PMCID: PMC3095320 DOI: 10.1186/1471-2229-10-237] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 11/04/2010] [Indexed: 05/19/2023]
Abstract
BACKGROUND Although numerous factors can influence gene expression, promoters are perhaps the most important component of the regulatory control process. Promoter regions are often defined as a region upstream of the transcriptional start. They contain regulatory elements that interact with regulatory proteins to modulate gene expression. Most genes possess their own unique promoter and large numbers of promoters are therefore available for study. Unfortunately, relatively few promoters have been isolated and characterized; particularly from soybean (Glycine max). RESULTS In this research, a bioinformatics approach was first performed to identify members of the Gmubi (G.max ubiquitin) and the GmERF (G. max Ethylene Response Factor) gene families of soybean. Ten Gmubi and ten GmERF promoters from selected genes were cloned upstream of the gfp gene and successfully characterized using rapid validation tools developed for both transient and stable expression. Quantification of promoter strength using transient expression in lima bean (Phaseolus lunatus) cotyledonary tissue and stable expression in soybean hairy roots showed that the intensity of gfp gene expression was mostly conserved across the two expression systems. Seven of the ten Gmubi promoters yielded from 2- to 7-fold higher expression than a standard CaMV35S promoter while four of the ten GmERF promoters showed from 1.5- to 2.2-times higher GFP levels compared to the CaMV35S promoter. Quantification of GFP expression in stably-transformed hairy roots of soybean was variable among roots derived from different transformation events but consistent among secondary roots, derived from the same primary transformation events. Molecular analysis of hairy root events revealed a direct relationship between copy number and expression intensity; higher copy number events displayed higher GFP expression. CONCLUSION In this study, we present expression intensity data on 20 novel soybean promoters from two different gene families, ubiquitin and ERF. We also demonstrate the utility of lima bean cotyledons and soybean hairy roots for rapid promoter analyses and provide novel insights towards the utilization of these expression systems. The soybean promoters characterized here will be useful for production of transgenic soybean plants for both basic research and commercial plant improvement.
Collapse
Affiliation(s)
- Carlos M Hernandez-Garcia
- Department of Horticulture and Crop Science, OARDC/The Ohio State University, 1680 Madison Ave., Wooster, OH 44691 USA
| | - Robert A Bouchard
- Department of Horticulture and Crop Science, OARDC/The Ohio State University, 1680 Madison Ave., Wooster, OH 44691 USA
| | - Paul J Rushton
- Department of Biology, University of Virginia, Charlottesville, VA 22904 USA
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007 USA
| | - Michelle L Jones
- Department of Horticulture and Crop Science, OARDC/The Ohio State University, 1680 Madison Ave., Wooster, OH 44691 USA
| | - Xianfeng Chen
- Department of Microbiology, University of Virginia Health Systems, Charlottesville, VA 22908 USA
- USACE, Environmental Lab, ERDC, 3909 Halls Ferry Road, Vicksburg, MS 39180 USA
| | - Michael P Timko
- Department of Biology, University of Virginia, Charlottesville, VA 22904 USA
| | - John J Finer
- Department of Horticulture and Crop Science, OARDC/The Ohio State University, 1680 Madison Ave., Wooster, OH 44691 USA
| |
Collapse
|
12
|
Hernandez-Garcia CM, Chiera JM, Finer JJ. Robotics and dynamic image analysis for studies of gene expression in plant tissues. J Vis Exp 2010:1733. [PMID: 22157949 PMCID: PMC3144599 DOI: 10.3791/1733] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Gene expression in plant tissues is typically studied by destructive extraction of compounds from plant tissues for in vitro analyses. The methods presented here utilize the green fluorescent protein (gfp) gene for continual monitoring of gene expression in the same pieces of tissues, over time. The gfp gene was placed under regulatory control of different promoters and introduced into lima bean cotyledonary tissues via particle bombardment. Cotyledons were then placed on a robotic image collection system, which consisted of a fluorescence dissecting microscope with a digital camera and a 2-dimensional robotics platform custom-designed to allow secure attachment of culture dishes. Images were collected from cotyledonary tissues every hour for 100 hours to generate expression profiles for each promoter. Each collected series of 100 images was first subjected to manual image alignment using ImageReady to make certain that GFP-expressing foci were consistently retained within selected fields of analysis. Specific regions of the series measuring 300 x 400 pixels, were then selected for further analysis to provide GFP Intensity measurements using ImageJ software. Batch images were separated into the red, green and blue channels and GFP-expressing areas were identified using the threshold feature of ImageJ. After subtracting the background fluorescence (subtraction of gray values of non-expressing pixels from every pixel) in the respective red and green channels, GFP intensity was calculated by multiplying the mean grayscale value per pixel by the total number of GFP-expressing pixels in each channel, and then adding those values for both the red and green channels. GFP Intensity values were collected for all 100 time points to yield expression profiles. Variations in GFP expression profiles resulted from differences in factors such as promoter strength, presence of a silencing suppressor, or nature of the promoter. In addition to quantification of GFP intensity, the image series were also used to generate time-lapse animations using ImageReady. Time-lapse animations revealed that the clear majority of cells displayed a relatively rapid increase in GFP expression, followed by a slow decline. Some cells occasionally displayed a sudden loss of fluorescence, which may be associated with rapid cell death. Apparent transport of GFP across the membrane and cell wall to adjacent cells was also observed. Time lapse animations provided additional information that could not otherwise be obtained using GFP Intensity profiles or single time point image collections.
Collapse
|
13
|
Oddone GM, Mills DA, Block DE. Dual inducible expression of recombinant GFP and targeted antisense RNA in Lactococcus lactis. Plasmid 2009; 62:108-18. [DOI: 10.1016/j.plasmid.2009.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 06/04/2009] [Accepted: 06/04/2009] [Indexed: 12/21/2022]
|
14
|
Oddone GM, Mills DA, Block DE. Incorporation of nisI-mediated nisin immunity improves vector-based nisin-controlled gene expression in lactic acid bacteria. Plasmid 2009; 61:151-8. [DOI: 10.1016/j.plasmid.2008.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 12/17/2008] [Accepted: 12/17/2008] [Indexed: 10/21/2022]
|
15
|
Dhillon T, Chiera JM, Lindbo JA, Finer JJ. Quantitative evaluation of six different viral suppressors of silencing using image analysis of transient GFP expression. PLANT CELL REPORTS 2009; 28:639-47. [PMID: 19198843 DOI: 10.1007/s00299-009-0675-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 01/02/2009] [Accepted: 01/18/2009] [Indexed: 05/03/2023]
Abstract
The effects of six different plant viral suppressors of gene silencing were compared using an automated image collection and analysis system developed for continual monitoring of GFP expression. Suppressors were introduced into lima bean cotyledonary tissues either as 3'-GFP translational fusions or as co-introductions with the GFP gene on a separate plasmid. The resultant transient expression profiles for each suppressor depended on whether the suppressor was introduced as a fusion or co-introduced on separate plasmids. As co-introductions, the silencing suppressors HCPro (from Tobacco etch virus), p19 (from Tomato bushy stunt virus), gammab (from Barley stripe mosaic virus) and p21 (from Beet yellows virus) led to an almost twofold increase in initial GFP expression levels, followed by a rapid decline. In contrast, fusions of HCPro, p19, and gammab to the 3'-end of GFP resulted in slightly lower but more prolonged GFP expression. Compared with the co-introductions, all GFP::Suppressor translational fusions gave reduced GFP fluorescence levels, suggesting interference of the fusion partner with GFP fluorescence. Regardless of the configuration, introductions of the silencing suppressors AL2 (from Tomato golden mosaic virus) and 126-kDa protein (from Tobacco mosaic virus) resulted in very low GFP fluorescence. This is the first report that directly compares the effects of a large number of viral suppressors of silencing on transient transgene expression using both translational fusions and co-introductions.
Collapse
Affiliation(s)
- Taniya Dhillon
- Department of Horticulture and Crop Science, OARDC/The Ohio State University, Wooster, OH 44691, USA
| | | | | | | |
Collapse
|