1
|
Ducrocq F, Walle R, Contini A, Oummadi A, Caraballo B, van der Veldt S, Boyer ML, Aby F, Tolentino-Cortez T, Helbling JC, Martine L, Grégoire S, Cabaret S, Vancassel S, Layé S, Kang JX, Fioramonti X, Berdeaux O, Barreda-Gómez G, Masson E, Ferreira G, Ma DWL, Bosch-Bouju C, De Smedt-Peyrusse V, Trifilieff P. Causal Link between n-3 Polyunsaturated Fatty Acid Deficiency and Motivation Deficits. Cell Metab 2020; 31:755-772.e7. [PMID: 32142670 DOI: 10.1016/j.cmet.2020.02.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 12/02/2019] [Accepted: 02/13/2020] [Indexed: 01/11/2023]
Abstract
Reward-processing impairment is a common symptomatic dimension of several psychiatric disorders. However, whether the underlying pathological mechanisms are common is unknown. Herein, we asked if the decrease in the n-3 polyunsaturated fatty acid (PUFA) lipid species, consistently described in these pathologies, could underlie reward-processing deficits. We show that reduced n-3 PUFA biostatus in mice leads to selective motivational impairments. Electrophysiological recordings revealed increased collateral inhibition of dopamine D2 receptor-expressing medium spiny neurons (D2-MSNs) onto dopamine D1 receptor-expressing MSNs in the nucleus accumbens, a main brain region for the modulation of motivation. Strikingly, transgenically preventing n-3 PUFA deficiency selectively in D2-expressing neurons normalizes MSN collateral inhibition and enhances motivation. These results constitute the first demonstration of a causal link between a behavioral deficit and n-3 PUFA decrease in a discrete neuronal population and suggest that lower n-3 PUFA biostatus in psychopathologies could participate in the etiology of reward-related symptoms.
Collapse
Affiliation(s)
- Fabien Ducrocq
- Université Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France.
| | - Roman Walle
- Université Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
| | - Andrea Contini
- Université Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
| | - Asma Oummadi
- Université Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
| | - Baptiste Caraballo
- Université Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
| | | | - Marie-Lou Boyer
- Université Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
| | - Frank Aby
- Université Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
| | | | | | - Lucy Martine
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Stéphane Grégoire
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Stéphanie Cabaret
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Sylvie Vancassel
- Université Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
| | - Sophie Layé
- Université Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
| | - Jing Xuan Kang
- Laboratory for Lipid Medicine and Technology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Xavier Fioramonti
- Université Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
| | - Olivier Berdeaux
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | | | - Elodie Masson
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Guillaume Ferreira
- Université Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
| | - David W L Ma
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road E., Guelph, ON N1G2W1, Canada
| | | | | | - Pierre Trifilieff
- Université Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France.
| |
Collapse
|
3
|
Liu X, Pang D, Yuan T, Li Z, Li Z, Zhang M, Ren W, Ouyang H, Tang X. N-3 polyunsaturated fatty acids attenuates triglyceride and inflammatory factors level in hfat-1 transgenic pigs. Lipids Health Dis 2016; 15:89. [PMID: 27161005 PMCID: PMC4862157 DOI: 10.1186/s12944-016-0259-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 05/03/2016] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The consumption of n-3 polyunsaturated fatty acids (PUFAs) is important to human health, especially in cases of cardiovascular disease. Although beneficial effects of n-3 PUFAs have been observed in a number of studies, the mechanisms involved in these effects have yet to be discovered. METHODS We generated hfat-1 transgenic pigs with traditional somatic cell nuclear transfer (SCNT) technology. The fatty acid composition in ear tissue of pigs were detected with gas chromatography. The cholesterol, triglycerides (TAG) and inflammation mediators in circulation were investigated. RESULTS The hfat-1 transgenic pigs were developed which accumulate high levels of n-3 PUFAs than wild-types pigs. Gas chromatography results demonstrated that the total n-3 PUFAs in the ear tissues of the transgenic founders were 2-fold higher than the wild-type pigs. A lipid analysis demonstrated that the levels of TAG in the transgenic pigs were decreased significantly. The basal levels of the inflammation mediators tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1 (MCP-1) and interleukin-6 (IL-6) in transgenic pigs were inhibited markedly compared with the wild-type pigs. CONCLUSIONS These results suggest that n-3 PUFAs accumulation in vivo may have beneficial effects on vascular and hfat-1 transgenic pigs may be a useful tool for investigating the involved mechanisms.
Collapse
Affiliation(s)
- Xingxing Liu
- Jilin Provincial Model Animal Engineering Research Center, College of Animal Sciences, Jilin University, Xi'an Road, 5333#, Jilin, 130062, China
| | - Daxin Pang
- Jilin Provincial Model Animal Engineering Research Center, College of Animal Sciences, Jilin University, Xi'an Road, 5333#, Jilin, 130062, China
| | - Ting Yuan
- Jilin Provincial Model Animal Engineering Research Center, College of Animal Sciences, Jilin University, Xi'an Road, 5333#, Jilin, 130062, China
| | - Zhuang Li
- Jilin Provincial Model Animal Engineering Research Center, College of Animal Sciences, Jilin University, Xi'an Road, 5333#, Jilin, 130062, China
| | - Zhanjun Li
- Jilin Provincial Model Animal Engineering Research Center, College of Animal Sciences, Jilin University, Xi'an Road, 5333#, Jilin, 130062, China
| | - Mingjun Zhang
- Jilin Provincial Model Animal Engineering Research Center, College of Animal Sciences, Jilin University, Xi'an Road, 5333#, Jilin, 130062, China
| | - Wenzhi Ren
- Jilin Provincial Model Animal Engineering Research Center, College of Animal Sciences, Jilin University, Xi'an Road, 5333#, Jilin, 130062, China
| | - Hongsheng Ouyang
- Jilin Provincial Model Animal Engineering Research Center, College of Animal Sciences, Jilin University, Xi'an Road, 5333#, Jilin, 130062, China
| | - Xiaochun Tang
- Jilin Provincial Model Animal Engineering Research Center, College of Animal Sciences, Jilin University, Xi'an Road, 5333#, Jilin, 130062, China.
| |
Collapse
|