1
|
Kido Y, Nanchi I, Matsuzaki T, Watari R, Kiyohara H, Seki N, Okuda T. Prediction of drug-drug interaction risk of P-glycoprotein substrate in drug discovery. Drug Metab Pharmacokinet 2024; 56:101008. [PMID: 38663183 DOI: 10.1016/j.dmpk.2024.101008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/15/2024] [Accepted: 03/04/2024] [Indexed: 06/24/2024]
Abstract
We aimed at predicting the drug-drug interaction (DDI) risk of P-glycoprotein (P-gp) substrates by using P-gp expressing LLC-PK1 cells and its knockout mice (KO). The area under the curve (AUC) of 16 marketed drugs and plasma concentration (Cplasma) of 207 screening compounds, with corrected efflux ratio (CER) ≥ 2, were compared between P-gp KO mice and wild type mice (WT). At permeability (Papp) ≥ 10 × 10-6 cm/s in parent LLC-PK1 cells, AUC ratios (KO/WT) and Cplasma ratios (KO/WT) of these compounds were within 3-fold. AUC ratios (KO/WT) of clinical P-gp substrates, with human AUC ratios with and without P-gp inhibitor administration ≥2, were higher than 8.7. These observations led us to establish a work-flow of P-gp substrate assessment with the threshold AUC ratio (KO/WT) ≥ 9 leading to a DDI risk of AUC ratio (human) ≥ 2. A screening compound showing high CER (=57.6) was found, but its AUC ratio (KO/WT) was 3.7, had been presumed to be a weak risk and its AUC ratio (human) was 1.2 in a later clinical DDI study. Our proposed workflow should be useful for predicting the DDI risk of P-gp substrates in drug discovery.
Collapse
Affiliation(s)
- Yasuto Kido
- Laboratory for Drug Discovery and Development, Shionogi & Co., Ltd., Osaka, Japan.
| | - Isamu Nanchi
- Laboratory for Bio-Drug Discovery, Shionogi & Co., Ltd., Osaka, Japan.
| | - Takanobu Matsuzaki
- Laboratory for Drug Discovery and Development, Shionogi & Co., Ltd., Osaka, Japan.
| | - Ryosuke Watari
- Laboratory for Drug Discovery and Development, Shionogi & Co., Ltd., Osaka, Japan.
| | - Hayato Kiyohara
- Laboratory for Drug Discovery and Development, Shionogi & Co., Ltd., Osaka, Japan.
| | - Naomi Seki
- Laboratory for Bio-Drug Discovery, Shionogi & Co., Ltd., Osaka, Japan.
| | - Tomohiko Okuda
- Laboratory for Bio-Drug Discovery, Shionogi & Co., Ltd., Osaka, Japan.
| |
Collapse
|
2
|
Yamada T, Kashiwagi Y, Rokugawa T, Kato H, Konishi H, Hamada T, Nagai R, Masago Y, Itoh M, Suganami T, Ogawa Y, Abe K. Evaluation of hepatic function using dynamic contrast-enhanced magnetic resonance imaging in melanocortin 4 receptor-deficient mice as a model of nonalcoholic steatohepatitis. Magn Reson Imaging 2018; 57:210-217. [PMID: 30465867 DOI: 10.1016/j.mri.2018.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/09/2018] [Accepted: 11/17/2018] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Melanocortin 4 receptor-deficient (MC4R-KO) mice fed a high-fat diet (HFD) develop liver pathology similar to human nonalcoholic steatohepatitis (NASH). However, although liver histology and blood biochemistry have been reported, hepatic function has not been evaluated. In the present study, we evaluated hepatic function in MC4R-KO mice fed an HFD using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) with gadolinium‑ethoxybenzyl‑diethylenetriamine pentaacetic acid (Gd-EOB-DTPA). MATERIALS AND METHODS Wild type (WT) mice and MC4R-KO mice were fed a standard diet (SD) or an HFD for 20 weeks. The hepatic signal intensity was obtained from DCE-MRI images, and relative enhancement (RE), the time to maximum RE (Tmax), and the half-life of RE elimination (T1/2) were calculated. Histopathological analysis was then performed. RESULTS Histological analysis with nonalcoholic fatty liver disease activity score (NAS) revealed that MC4R-KO mice fed an HFD achieved the NAS of 5. There was moderate fibrosis in MC4R-KO mice fed an HFD. DCE-MRI with Gd-EOB-DTPA showed that Tmax and T1/2 were significantly longer in MC4R-KO mice fed an HFD compared with wild type (WT) mice (Tmax, WT, 3.9 ± 0.4 min; MC4R-KO, 7.4 ± 1.5 min; T1/2, WT, 23.7 ± 1.9 min; MC4R-KO, 62.5 ± 18.5 min). Tmax and T1/2 were significantly correlated with histopathologic score (steatosis vs. Tmax, rho = 0.48, P = 0.04; steatosis vs. T1/2, rho = 0.50, P = 0.03; inflammation vs. Tmax, rho = 0.55, P = 0.02; inflammation vs. T1/2, rho = 0.61, P < 0.01; ballooning vs. T1/2, rho = 0.51, P = 0.03;fibrosis vs Tmax, rho = 0.72, P < 0.01; fibrosis vs T1/2, rho = 0.75, P < 0.01). CONCLUSIONS MC4R-KO mice fed an HFD developed obesity and NASH. The liver kinetics of Gd-EOB-DTPA were significantly different in MC4R-KO mice fed an HFD from WT mice, and correlated with the histopathologic score. These results suggest that MC4R-KO mice fed an HFD mimic the hepatic pathology and liver function of human NASH, and therefore might be useful for the study of hepatic dysfunction during the fibrotic stage of NASH.
Collapse
Affiliation(s)
- Tomomi Yamada
- Biomarker R&D Department, Shionogi & Co., Ltd., Osaka, Japan.
| | - Yuto Kashiwagi
- Biomarker R&D Department, Shionogi & Co., Ltd., Osaka, Japan
| | - Takemi Rokugawa
- Biomarker R&D Department, Shionogi & Co., Ltd., Osaka, Japan
| | - Hideaki Kato
- Drug Discovery& Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| | - Haruyo Konishi
- Drug Discovery& Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| | - Tadateru Hamada
- Drug Discovery& Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| | - Ryohei Nagai
- Drug Discovery& Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| | - Yusaku Masago
- Drug Discovery& Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| | - Michiko Itoh
- Department of Organ Network and Metabolism, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takayoshi Suganami
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Yoshihiro Ogawa
- Department of Medical and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Molecular and Cellular Metabolism, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan; Japan Agency for Medical Research and Development, CREST, Tokyo, Japan
| | - Kohji Abe
- Biomarker R&D Department, Shionogi & Co., Ltd., Osaka, Japan
| |
Collapse
|
3
|
Liu T, Hu Y, Guo S, Tan L, Zhan Y, Yang L, Liu W, Wang N, Li Y, Zhang Y, Liu C, Yang Y, Adelstein RS, Wang A. Identification and characterization of MYH9 locus for high efficient gene knock-in and stable expression in mouse embryonic stem cells. PLoS One 2018; 13:e0192641. [PMID: 29438440 PMCID: PMC5811019 DOI: 10.1371/journal.pone.0192641] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/26/2018] [Indexed: 01/22/2023] Open
Abstract
Targeted integration of exogenous genes into so-called safe harbors/friend sites, offers the advantages of expressing normal levels of target genes and preventing potentially adverse effects on endogenous genes. However, the ideal genomic loci for this purpose remain limited. Additionally, due to the inherent and unresolved issues with the current genome editing tools, traditional embryonic stem (ES) cell-based targeted transgenesis technology is still preferred in practical applications. Here, we report that a high and repeatable homologous recombination (HR) frequency (>95%) is achieved when an approximate 6kb DNA sequence flanking the MYH9 gene exon 2 site is used to create the homology arms for the knockout/knock-in of diverse nonmuscle myosin II (NM II) isoforms in mouse ES cells. The easily obtained ES clones greatly facilitated the generation of multiple NM II genetic replacement mouse models, as characterized previously. Further investigation demonstrated that though the targeted integration site for exogenous genes is shifted to MYH9 intron 2 (about 500bp downstream exon 2), the high HR efficiency and the endogenous MYH9 gene integrity are not only preserved, but the expected expression of the inserted gene(s) is observed in a pre-designed set of experiments conducted in mouse ES cells. Importantly, we confirmed that the expression and normal function of the endogenous MYH9 gene is not affected by the insertion of the exogenous gene in these cases. Therefore, these findings suggest that like the commonly used ROSA26 site, the MYH9 gene locus may be considered a new safe harbor for high-efficiency targeted transgenesis and for biomedical applications.
Collapse
Affiliation(s)
- Tanbin Liu
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
| | - Yi Hu
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
| | - Shiyin Guo
- College of Food Science and Technology, HUNAU, Changsha, Hunan, China
| | - Lei Tan
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
| | - Yang Zhan
- Lab of Functional Proteomics (LFP), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, HUNAU, Changsha, Hunan, China
| | - Lingchen Yang
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
| | - Wei Liu
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
| | - Naidong Wang
- Lab of Functional Proteomics (LFP), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, HUNAU, Changsha, Hunan, China
| | - Yalan Li
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
| | - Yingfan Zhang
- Lab of Molecular Cardiology (LMC), National Heart, Lung, and Blood Institute (NHLBI)/National Institutes of Health (NIH), Bethesda, MD, United States of America
| | - Chengyu Liu
- Transgenic Core, NHLBI/ NIH, Bethesda, MD, United States of America
| | - Yi Yang
- Lab of Functional Proteomics (LFP), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, HUNAU, Changsha, Hunan, China
| | - Robert S. Adelstein
- Lab of Molecular Cardiology (LMC), National Heart, Lung, and Blood Institute (NHLBI)/National Institutes of Health (NIH), Bethesda, MD, United States of America
| | - Aibing Wang
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
- Lab of Molecular Cardiology (LMC), National Heart, Lung, and Blood Institute (NHLBI)/National Institutes of Health (NIH), Bethesda, MD, United States of America
- * E-mail:
| |
Collapse
|
4
|
Tomimatsu K, Kokura K, Nishida T, Yoshimura Y, Kazuki Y, Narita M, Oshimura M, Ohbayashi T. Multiple expression cassette exchange via TP901-1, R4, and Bxb1 integrase systems on a mouse artificial chromosome. FEBS Open Bio 2017; 7:306-317. [PMID: 28286726 PMCID: PMC5337897 DOI: 10.1002/2211-5463.12169] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/17/2016] [Accepted: 11/24/2016] [Indexed: 01/21/2023] Open
Abstract
The site-specific excision of a target DNA sequence for genetic knockout or lineage tracing is a powerful tool for investigating biological systems. Currently, site-specific recombinases (SSRs), such as Cre or Flp recombination target cassettes, have been successfully excised or inverted by a single SSR to regulate transgene expression. However, the use of a single SSR might restrict the complex control of gene expression. This study investigated the potential for expanding the multiple regulation of transgenes using three different integrase systems (TP901-1, R4, and Bxb1). We designed three excision cassettes that expressed luciferase, where the luciferase expression could be exchanged to a fluorescent protein by site-specific recombination. Individual cassettes that could be regulated independently by a different integrase were connected in tandem and inserted into a mouse artificial chromosome (MAC) vector in Chinese hamster ovary cells. The transient expression of an integrase caused the targeted luciferase activity to be lost and fluorescence was activated. Additionally, the integrase system enabled the specific excision of targeted DNA sequences without cross-reaction with the other recombination targets. These results suggest that the combined use of these integrase systems in a defined locus on a MAC vector permits the multiple regulation of transgene expression and might contribute to genomic or cell engineering.
Collapse
Affiliation(s)
- Kosuke Tomimatsu
- Research Center for Bioscience and TechnologyTottori UniversityYonagoJapan
- Japan Society for the Promotion of ScienceTokyoJapan
| | - Kenji Kokura
- Chromosome Engineering Research CenterTottori UniversityYonagoJapan
- Division of Human Genome ScienceDepartment of Molecular and Cellular BiologySchool of Life SciencesFaculty of MedicineTottori UniversityYonagoJapan
| | - Tadashi Nishida
- Research Center for Bioscience and TechnologyTottori UniversityYonagoJapan
| | - Yuki Yoshimura
- Department of Biomedical ScienceInstitute of Regenerative Medicine and BiofunctionGraduate School of Medical SciencesTottori UniversityYonagoJapan
- Central Institute for Experimental AnimalsKawasakiJapan
| | - Yasuhiro Kazuki
- Chromosome Engineering Research CenterTottori UniversityYonagoJapan
- Department of Biomedical ScienceInstitute of Regenerative Medicine and BiofunctionGraduate School of Medical SciencesTottori UniversityYonagoJapan
| | - Masashi Narita
- Cancer Research UK Cambridge InstituteLi Ka Shing CentreUniversity of CambridgeUK
| | - Mitsuo Oshimura
- Chromosome Engineering Research CenterTottori UniversityYonagoJapan
- Department of Biomedical ScienceInstitute of Regenerative Medicine and BiofunctionGraduate School of Medical SciencesTottori UniversityYonagoJapan
| | - Tetsuya Ohbayashi
- Research Center for Bioscience and TechnologyTottori UniversityYonagoJapan
| |
Collapse
|
5
|
Characterization of the role of sphingomyelin synthase 2 in glucose metabolism in whole-body and peripheral tissues in mice. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:688-702. [DOI: 10.1016/j.bbalip.2016.04.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 04/20/2016] [Accepted: 04/30/2016] [Indexed: 11/22/2022]
|