1
|
Chege P, Njagi J, Komen J, Ngure G, Muriuki J, Karembu M. Best practices for acceptability of GM crops field trials conclusions: lessons for Africa. GM CROPS & FOOD 2024; 15:222-232. [PMID: 38980826 PMCID: PMC11236291 DOI: 10.1080/21645698.2024.2376415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024]
Abstract
The ability to transfer information about the performance, safety, and environmental impacts of a genetically modified (GM) crop from confined field trials (CFTs) conducted in one location to another is increasingly gaining importance in biosafety regulatory assessment and decision-making. The CFT process can be expensive, time-consuming, and logistically challenging. Data transportability can help overcome these challenges by allowing the use of data obtained from CFTs conducted in one country to inform regulatory decision-making in another country. Applicability of transported CFT data would be particularly beneficial to the public sector product developers and small enterprises that develop innovative GM events but cannot afford to replicate redundant CFTs, as well as regulatory authorities seeking to improve the deployment of limited resources. This review investigates case studies where transported CFT data have successfully been applied in biosafety assessment and decision-making, with an outlook of how African countries could benefit from a similar approach.
Collapse
Affiliation(s)
- Paul Chege
- Program for Biosafety Systems (PBS), International Service for the Acquisition of Agri-biotech Applications (ISAAA AfriCenter), Nairobi, Kenya
- Program for Biosafety Systems (PBS), International Food Policy Institute (IFPRI), Washington, WA, USA
| | - Julia Njagi
- Inspection, National Biosafety Authority (NBA), Nairobi, Kenya
| | - John Komen
- Program for Biosafety Systems (PBS), International Food Policy Institute (IFPRI), Washington, WA, USA
| | - Godfrey Ngure
- Program for Biosafety Systems (PBS), International Service for the Acquisition of Agri-biotech Applications (ISAAA AfriCenter), Nairobi, Kenya
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - John Muriuki
- Environmental Science, Kenyatta University, Nairobi, Kenya
| | - Margaret Karembu
- Program for Biosafety Systems (PBS), International Service for the Acquisition of Agri-biotech Applications (ISAAA AfriCenter), Nairobi, Kenya
| |
Collapse
|
2
|
Soares D, Vertuan H, Bacalhau F, José M, Crivellari A, Belchior GG, Berger GU. Genetically modified crops do not present variations in pollen viability and morphology when compared to their conventional counterparts. PLoS One 2023; 18:e0285079. [PMID: 37126533 PMCID: PMC10150986 DOI: 10.1371/journal.pone.0285079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/16/2023] [Indexed: 05/02/2023] Open
Abstract
Modern agricultural biotechnologies, such as those derived from genetic modification, are solutions that can enable an increase in food production, lead to more efficient use of natural resources, and promote environmental impact reduction. Crops with altered genetic materials have been extensively subjected to safety assessments to fulfill regulatory requirements prior to commercialization. The Brazilian National Technical Biosafety Commission (CTNBio) provides provisions for commercial release of transgenic crops in Brazil, including requiring information on pollen dispersion ability as part of environmental risk assessment, which includes pollen viability and morphology studies. Here we present the pollen viability and morphology of non-transgenic conventional materials, single-event genetically modified (GM) products, and stacked GM products from soybean, maize and cotton cultivated in Brazil. Microscopical observation of stained pollen grain was conducted to determine the percentage of pollen viability as well as pollen morphology, which is assessed by measuring pollen grain diameter. The pollen viability and diameter of GM soybean, maize and cotton, evaluated across a number of GM events in each crop, were similar to the conventional non-GM counterparts. Pollen characterization data contributed to the detailed phenotypic description of GM crops, supporting the conclusion that the studied events were not fundamentally different from the conventional control.
Collapse
Affiliation(s)
- Daniel Soares
- Regulatory Science, Bayer Crop Science, São Paulo, SP, Brazil
| | | | | | - Marcia José
- Regulatory Science, Bayer Crop Science, São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
3
|
Ren Z, Yang M, He H, Ma Y, Zhou Y, Liu B, Xue K. Transgenic Maize Has Insignificant Effects on the Diversity of Arthropods: A 3-Year Study. PLANTS 2022; 11:plants11172254. [PMID: 36079638 PMCID: PMC9460771 DOI: 10.3390/plants11172254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022]
Abstract
In order to provide more evidence for the evaluation of the ecological risks of transgenic maize, arthropod population dynamics and biodiversity in fields planted with two kinds of transgenic maize (DBN9868, expressing the PAT and EPSPS genes, and DBN9936, expressing the Cry1Ab and EPSPS gene) were investigated by direct observation and trapping for three years. The recorded arthropod species belonged to 19 orders and 87 families, including Aphidoidea, Chrysomelidae, Coccinellidae, Chrysopidae and Araneae. The species richness, Shannon–Wiener diversity index, Pielou evenness index, dominance index and community similarity index of arthropod communities in maize fields were statistically analyzed, and the results showed that (1) the biodiversity difference of arthropod communities between transgenic maize and non-transgenic maize was smaller than that between different conventional cultivars; (2) the differences between ground-dwelling arthropod communities were less obvious than those between plant-inhabiting arthropod communities; and (3) Lepidoptera, the target pests of Bt maize, were not the dominant population in maize fields, and the dominant arthropod population in maize fields varied greatly between years and months. Combining those results, we concluded that the transgenic maize DBN9868 and DBN9936 had no significant effect on the arthropod communities in the field.
Collapse
Affiliation(s)
- Zhentao Ren
- Country Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Muzhi Yang
- Country Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Haopeng He
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yanjie Ma
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yijun Zhou
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Biao Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
- Correspondence: (B.L.); (K.X.)
| | - Kun Xue
- Country Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
- Correspondence: (B.L.); (K.X.)
| |
Collapse
|
4
|
Biswas PS, Swamy BPM, Kader MA, Hossain MA, Boncodin R, Samia M, Hassan ML, Wazuddin M, MacKenzie D, Reinke R. Development and Field Evaluation of Near-Isogenic Lines of GR2-EBRRI dhan29 Golden Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:619739. [PMID: 33719290 PMCID: PMC7947304 DOI: 10.3389/fpls.2021.619739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/11/2021] [Indexed: 06/07/2023]
Abstract
Vitamin A deficiency remains a common public health problem among the rice-dependent poor people in the developing countries of Asia. Conventional milled rice does not contain provitamin A (β-carotene) in is edible part (endosperm) and is also deficient in essential minerals, such as iron and zinc. Transgenic Golden Rice event GR2E, which produces β-carotene in its endosperm, was used as a parent to introgress the transgene locus conferring β-carotene biosynthesis into a widely grown rice variety, BRRI dhan29, which covers around 26.1% of the irrigated rice area (4.901 Mha) of Bangladesh in the dry season. The current study reports the introgression process and field performance of GR2E BRRI dhan29 Golden Rice. The background recovery of GR2E BRRI dhan29 lines at BC5F2 generation was more than 98% with a 6K SNP-chip set. The transgenic GR2E BRRI dhan29 yielded 6.2 t/ha to 7.7 t/ha with an average of 7.0 ± 0.38 t/ha, while the non-transgenic BRRI dhan29 yielded 7.0 t/ha under confined field conditions in Bangladesh. Moreover, no significant difference between GR2-E BRRI dhan29 Golden Rice and non-transgenic BRRI dhan29 in any measured trait was observed in the multi-location trials conducted at five locations across the country. Furthermore, the appearance of cooked and uncooked rice was similar to that of BRRI dhan29 except for the yellow color indicating the presence of carotenoids. Total carotenoid content in the selected introgression lines ranged from 8.5 to 12.5 μg/g with an average of 10.6 ± 1.16 μg/g. This amount is sufficient to deliver approximately 66 and 80% of the recommended daily intake of vitamin A for children and women, respectively, assuming complete substitution of white rice in the diet with Golden Rice. However, the lead selected line(s) need further evaluation at open field conditions before deciding for commercial cultivation. A large-scale feeding trial among the malnourished community with this newly developed GR2-E BRRI dhan29 Golden Rice is also required to validate its efficacy in alleviating vitamin A deficiency.
Collapse
Affiliation(s)
- Partha S. Biswas
- Plant Breeding Division, Bangladesh Rice Research Institute, Gazipur, Bangladesh
| | | | - Md. Abdul Kader
- Plant Breeding Division, Bangladesh Rice Research Institute, Gazipur, Bangladesh
| | - Md. Alamgir Hossain
- Plant Breeding Division, Bangladesh Rice Research Institute, Gazipur, Bangladesh
| | - Raul Boncodin
- International Rice Research Institute, Los Baños, Philippines
| | - Mercy Samia
- International Rice Research Institute, Los Baños, Philippines
| | - Md. Lutful Hassan
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - M. Wazuddin
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Donald MacKenzie
- Donald Danforth Plant Science Center, Saint Louis, MO, United States
| | - Russell Reinke
- International Rice Research Institute, Los Baños, Philippines
| |
Collapse
|
5
|
Vesprini F, Maggi AI, López Olaciregui M, Módena NA. Transportability of Conclusions From Confined Field Trials: A Case Study Using the Virus Resistant Transgenic Bean Developed in Brazil. Front Bioeng Biotechnol 2020; 8:815. [PMID: 32850707 PMCID: PMC7396523 DOI: 10.3389/fbioe.2020.00815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/24/2020] [Indexed: 11/30/2022] Open
Abstract
The conceptual framework for Data Transportability, builds on the premise that well-designed studies conducted for the environmental and food/feed risk assessment of transgenic crops may be transportable across geographies. Beyond individual data, provided that certain criteria are met, the general conclusions of comparative assessments of a transgenic crop with its conventional counterpart would also be transportable. In spite of this, many regulatory agencies still require in-country field trials to complete risk assessments of transgenic crops. A sub-team from ILSI Argentina’s (International Life Sciences Institute, Argentina. www.ilsi.org.ar) Biotechnology Working Group tested the applicability of the transportability concept to the case of the golden mosaic virus-resistant transgenic bean, developed by EMBRAPA (EMBRAPA: Brazilian Agricultural Research Corporation). To this end, regulatory confined field trials (CFTs) carried out in Brazil to gather agro-phenotypic and compositional data were analyzed. The transportability of the conclusions of these studies to the bean cropping areas in Argentina was assessed as a conceptual exercise (with no intention to conclude on the biosafety of the common bean event). Comparative studies included the transgenic bean and its conventional parental line and were run in different agroecological environments so that any relevant differences could be observed. The main criteria to enable transportability were set by the sub-team and found to be met by the CFTs carried out in Brazil to inform a potential risk evaluation for Argentina.
Collapse
Affiliation(s)
- Facundo Vesprini
- Biotechnology Directorate, Argentinian Ministry of Agriculture, Livestock and Fisheries, Buenos Aires, Argentina.,ILSI Argentina, Working Group on Biotechnology, Buenos Aires, Argentina
| | - Andrés Ignacio Maggi
- ILSI Argentina, Working Group on Biotechnology, Buenos Aires, Argentina.,National Service for Agrifood Health and Quality (SENASA), Buenos Aires, Argentina
| | - Magdalena López Olaciregui
- ILSI Argentina, Working Group on Biotechnology, Buenos Aires, Argentina.,Corteva Agriscience, Buenos Aires, Argentina
| | - Natalia Andrea Módena
- ILSI Argentina, Working Group on Biotechnology, Buenos Aires, Argentina.,Bayer Crop Science, Buenos Aires, Argentina
| |
Collapse
|
6
|
Jose M, Vertuan H, Soares D, Sordi D, Bellini LF, Kotsubo R, Berger GU. Comparing agronomic and phenotypic plant characteristics between single and stacked events in soybean, maize, and cotton. PLoS One 2020; 15:e0231733. [PMID: 32339186 PMCID: PMC7185713 DOI: 10.1371/journal.pone.0231733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/30/2020] [Indexed: 11/28/2022] Open
Abstract
Genetically modified (GM) crops are one of the most valuable tools of modern biotechnology that secure yield potential needed to sustain the global agricultural demands for food, feed, fiber, and energy. Crossing single GM events through conventional breeding has proven to be an effective way to pyramid GM traits from individual events and increase yield protection in the resulting combined products. Even though years of research and commercialization of GM crops show that these organisms are safe and raise no additional biosafety concerns, some regulatory agencies still require risk assessments for these products. We sought out to investigate whether stacking single GM events would have a significant impact on agronomic and phenotypic plant characteristics in soybean, maize, and cotton. Several replicated field trials designed as randomized complete blocks were conducted by Monsanto Regulatory Department from 2008 to 2017 in field sites representative of cultivation regions in Brazil. In total, twenty-one single and stacked GM materials currently approved for in-country commercial use were grown with the corresponding conventional counterparts and commercially available GM/non-GM references. The generated data were presented to the Brazilian regulatory agency CTNBio (National Biosafety Technical Committee) over the years to request regulatory approvals for the single and stacked products, in compliance with the existing normatives. Data was submitted to analysis of variance and differences between GM and control materials were assessed using t-test with a 5% significance level. Data indicated the predominance of similarities and neglectable differences between single and stacked GM crops when compared to conventional counterpart. Our results support the conclusion that combining GM events through conventional breeding does not alter agronomic or phenotypic plant characteristics in these stacked crops. This is compatible with a growing weight of evidence that indicates this long-adopted strategy does not increase the risks associated with GM materials. It also provides evidence to support the review and modernization of the existing regulatory normatives to no longer require additional risk assessments of GM stacks comprised of previously approved single events for biotechnology-derived crops. The data analyzed confirms that the risk assessment of the individual events is sufficient to demonstrate the safety of the stacked products, which deliver significant benefits to growers and to the environment.
Collapse
Affiliation(s)
- Marcia Jose
- Regulatory Science, Bayer Crop Science., São Paulo, SP, Brazil
| | | | - Daniel Soares
- Regulatory Science, Bayer Crop Science., São Paulo, SP, Brazil
| | - Daniel Sordi
- Regulatory Science, Bayer Crop Science., São Paulo, SP, Brazil
| | - Luiz F. Bellini
- Regulatory Science, Bayer Crop Science., São Paulo, SP, Brazil
| | - Rafael Kotsubo
- Regulatory Science, Bayer Crop Science., São Paulo, SP, Brazil
| | | |
Collapse
|
7
|
Assessment of potential impacts associated with gene flow from transgenic hybrids to Mexican maize landraces. Transgenic Res 2019; 28:509-523. [PMID: 31250247 PMCID: PMC6848245 DOI: 10.1007/s11248-019-00160-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/22/2019] [Indexed: 12/05/2022]
Abstract
Genetically modified (GM) maize has been grown and safely consumed on a global scale since its commercialization in 1996. However, questions have been raised about the potential impact that GM maize could have on native maize landraces in Mexico, which is the center of origin and diversity of maize. This research was conducted to evaluate potential changes to maize landraces in an unlikely event of transgene introgression. For this study, two GM traits that confer insect protection and herbicide tolerance in maize (MON 89034 and MON 88017), designated as VT3Pro, were introgressed into two Mexican landraces, Tuxpeño and Tabloncillo. Field trials were conducted across four environments to assess phenotypic characteristics, plant response to stressors, and kernel composition of landraces with and without VT3Pro traits. Furthermore, materials from four backcrossing generations were analyzed for segregation of these GM traits. Generally, no significant differences were observed between landraces with and without VT3Pro traits for the evaluated characteristics and the segregation analysis showed that GM traits, when introgressed into landraces, followed Mendelian principles. These results support the conclusion that, if inadvertently introgressed into landraces, VT3Pro traits are not expected to alter phenotypic or kernel characteristics, plant response to stressors (except for targeted insect protection and herbicide tolerance traits) and would segregate like any endogenous gene. These results should be taken into consideration when discussing benefits and risks associated with commercial production of GM maize hybrids in the centers of origin and diversity of maize.
Collapse
|