1
|
Bai X, Goher F, Qu C, Guo J, Liu S, Pu L, Zhan G, Kang Z, Guo J. Soybean transcription factor GmNF-YB20 confers resistance to stripe rust in transgenic wheat by regulating nonspecific lipid transfer protein genes. PLANT, CELL & ENVIRONMENT 2024; 47:4932-4944. [PMID: 39115239 DOI: 10.1111/pce.15077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/18/2024] [Accepted: 07/26/2024] [Indexed: 11/06/2024]
Abstract
Worldwide food security is severely threatened by the devastating wheat stripe rust disease. The utilization of resistant wheat cultivars represents the most cost-effective and efficient strategy for combating this disease. However, the lack of resistant resources has been a major bottleneck in breeding for wheat disease resistance. Therefore, revealing novel gene resources for combating stripe rust and elucidating the underlying resistance mechanism is of utmost urgency. In this study, we identified that the soybean NF-YB transcription factor GmNF-YB20 in wheat provides resistance to the stripe rust fungus (Puccinia striiformis f. sp. tritici, Pst). Wheat lines with stable overexpression of the GmNF-YB20 enhanced resistance against multiple Pst races. Transcriptome profiling of GmNF-YB20 transgenic wheat under Pst infection unveiled its involvement in the lipid signaling pathway. RT-qPCR assays suggested that GmNF-YB20 increased transcript levels of multiple nonspecific lipid transfer protein (LTP) genes during wheat-Pst interaction, luciferase reporter analysis illustrates that it activates the transcription of TaLTP1.50 in wheat protoplast, and GmNF-YB20 overexpressed wheat plants had higher total LTP content in vivo during Pst infection. Overexpression of TaLTP1.50 in wheat significantly increased resistance to Pst, whereas knockdown of TaLTP1.50 exhibited the opposite trends, indicating that TaLTP1.50 plays a positive role in wheat resistance. Taken together, our findings provide perspective regarding the molecular mechanism of GmNF-YB20 in wheat and highlight the potential use for wheat breeding.
Collapse
Affiliation(s)
- Xingxuan Bai
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Farhan Goher
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Chenfei Qu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jia Guo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Shuai Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Lefan Pu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Gangming Zhan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Zhensheng Kang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jun Guo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
2
|
Integrated Transcriptome and Metabolome Analysis of Rice Leaves Response to High Saline-Alkali Stress. Int J Mol Sci 2023; 24:ijms24044062. [PMID: 36835473 PMCID: PMC9960601 DOI: 10.3390/ijms24044062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/11/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Rice (Oryza sativa) is one of the most important crops grown worldwide, and saline-alkali stress seriously affects the yield and quality of rice. It is imperative to elucidate the molecular mechanisms underlying rice response to saline-alkali stress. In this study, we conducted an integrated analysis of the transcriptome and metabolome to elucidate the effects of long-term saline-alkali stress on rice. High saline-alkali stress (pH > 9.5) induced significant changes in gene expression and metabolites, including 9347 differentially expressed genes (DEGs) and 693 differentially accumulated metabolites (DAMs). Among the DAMs, lipids and amino acids accumulation were greatly enhanced. The pathways of the ABC transporter, amino acid biosynthesis and metabolism, glyoxylate and dicarboxylate metabolism, glutathione metabolism, TCA cycle, and linoleic acid metabolism, etc., were significantly enriched with DEGs and DAMs. These results suggest that the metabolites and pathways play important roles in rice's response to high saline-alkali stress. Our study deepens the understanding of mechanisms response to saline-alkali stress and provides references for molecular design breeding of saline-alkali resistant rice.
Collapse
|
3
|
Yang X, Gu X, Ding J, Yao L, Gao X, Zhang M, Meng Q, Wei S, Fu J. Gene expression analysis of resistant and susceptible rice cultivars to sheath blight after inoculation with Rhizoctonia solani. BMC Genomics 2022; 23:278. [PMID: 35392815 PMCID: PMC8991730 DOI: 10.1186/s12864-022-08524-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 03/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rice sheath blight, caused by Rhizoctonia solani Kühn (teleomorph: Thanatephorus cucumeris), is one of the most severe diseases in rice (Oryza sativa L.) worldwide. Studies on resistance genes and resistance mechanisms of rice sheath blight have mainly focused on indica rice. Rice sheath blight is a growing threat to rice production with the increasing planting area of japonica rice in Northeast China, and it is therefore essential to explore the mechanism of sheath blight resistance in this rice subspecies. RESULTS In this study, RNA-seq technology was used to analyse the gene expression changes of leaf sheath at 12, 24, 36, 48, and 72 h after inoculation of the resistant cultivar 'Shennong 9819' and susceptible cultivar 'Koshihikari' with R. solani. In the early stage of R. solani infection of rice leaf sheaths, the number of differentially expressed genes (DEGs) in the inoculated leaf sheaths of resistant and susceptible cultivars showed different regularity. After inoculation, the number of DEGs in the resistant cultivar fluctuated, while the number of DEGs in the susceptible cultivar increased first and then decreased. In addition, the number of DEGs in the susceptible cultivar was always higher than that in the resistant cultivar. After inoculation with R. solani, the overall transcriptome changes corresponding to multiple biological processes, molecular functions, and cell components were observed in both resistant and susceptible cultivars. These included metabolic process, stimulus response, biological regulation, catalytic activity, binding and membrane, and they were differentially regulated. The phenylalanine metabolic pathway; tropane, piperidine, and pyridine alkaloid biosynthesis pathways; and plant hormone signal transduction were significantly enriched in the early stage of inoculation of the resistant cultivar Shennong 9819, but not in the susceptible cultivar Koshihikari. This indicates that the response of the resistant cultivar Shennong 9819 to pathogen stress was faster than that of the susceptible cultivar. The expression of plant defense response marker PR1b gene, transcription factor OsWRKY30 and OsPAL1 and OsPAL6 genes that induce plant resistance were upregulated in the resistant cultivar. These data suggest that in the early stage of rice infection by R. solani, there is a pathogen-induced defence system in resistant rice cultivars, involving the expression of PR genes, key transcription factors, PAL genes, and the enrichment of defence-related pathways. CONCLUSION The transcriptome data revealed the molecular and biochemical differences between resistant and susceptible cultivars of rice after inoculation with R. solani, indicating that resistant cultivars have an immune response mechanism in the early stage of pathogen infection. Disease resistance is related to the overexpression of PR genes, key transcriptome factors, and PAL genes, which are potential targets for crop improvement.
Collapse
Affiliation(s)
- Xiaohe Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, Liaoning, China.,Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, 154007, Heilongjiang, China
| | - Xin Gu
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, 154007, Heilongjiang, China
| | - Junjie Ding
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, 154007, Heilongjiang, China
| | - Liangliang Yao
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, 154007, Heilongjiang, China
| | - Xuedong Gao
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, 154007, Heilongjiang, China
| | - Maoming Zhang
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, 154007, Heilongjiang, China
| | - Qingying Meng
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, 154007, Heilongjiang, China
| | - Songhong Wei
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, Liaoning, China.
| | - Junfan Fu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, Liaoning, China.
| |
Collapse
|
4
|
Genome-Wide Identification and Expression of Chitinase Class I Genes in Garlic ( Allium sativum L.) Cultivars Resistant and Susceptible to Fusarium proliferatum. PLANTS 2021; 10:plants10040720. [PMID: 33917252 PMCID: PMC8068077 DOI: 10.3390/plants10040720] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023]
Abstract
Vegetables of the Allium genus are prone to infection by Fusarium fungi. Chitinases of the GH19 family are pathogenesis-related proteins inhibiting fungal growth through the hydrolysis of cell wall chitin; however, the information on garlic (Allium sativum L.) chitinases is limited. In the present study, we identified seven class I chitinase genes, AsCHI1–7, in the A. sativum cv. Ershuizao genome, which may have a conserved function in the garlic defense against Fusarium attack. The AsCHI1–7 promoters contained jasmonic acid-, salicylic acid-, gibberellins-, abscisic acid-, auxin-, ethylene-, and stress-responsive elements associated with defense against pathogens. The expression of AsCHI2, AsCHI3, and AsCHI7 genes was constitutive in Fusarium-resistant and -susceptible garlic cultivars and was mostly induced at the early stage of F. proliferatum infection. In roots, AsCHI2 and AsCHI3 mRNA levels were increased in the susceptible and decreased in the resistant cultivar, whereas in cloves, AsCHI7 and AsCHI5 expression was decreased in the susceptible but increased in the resistant plants, suggesting that these genes are involved in the garlic response to Fusarium proliferatum attack. Our results provide insights into the role of chitinases in garlic and may be useful for breeding programs to increase the resistance of Allium crops to Fusarium infections.
Collapse
|
5
|
Shi W, Zhao SL, Liu K, Sun YB, Ni ZB, Zhang GY, Tang HS, Zhu JW, Wan BJ, Sun HQ, Dai JY, Sun MF, Yan GH, Wang AM, Zhu GY. Comparison of leaf transcriptome in response to Rhizoctonia solani infection between resistant and susceptible rice cultivars. BMC Genomics 2020; 21:245. [PMID: 32188400 PMCID: PMC7081601 DOI: 10.1186/s12864-020-6645-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/04/2020] [Indexed: 02/06/2023] Open
Abstract
Background Sheath blight (SB), caused by Rhizoctonia solani, is a common rice disease worldwide. Currently, rice cultivars with robust resistance to R. solani are still lacking. To provide theoretic basis for molecular breeding of R. solani-resistant rice cultivars, the changes of transcriptome profiles in response to R. solani infection were compared between a moderate resistant cultivar (Yanhui-888, YH) and a susceptible cultivar (Jingang-30, JG). Results In the present study, 3085 differentially express genes (DEGs) were detected between the infected leaves and the control in JG, with 2853 DEGs in YH. A total of 4091 unigenes were significantly upregulated in YH than in JG before infection, while 3192 were significantly upregulated after infection. Further analysis revealed that YH and JG showed similar molecular responses to R. solani infection, but the responses were earlier in JG than in YH. Expression levels of trans-cinnamate 4-monooxygenase (C4H), ethylene-insensitive protein 2 (EIN2), transcriptome factor WRKY33 and the KEGG pathway plant-pathogen interaction were significantly affected by R. solani infection. More importantly, these components were all over-represented in YH cultivar than in JG cultivar before and/or after infection. Conclusions These genes possibly contribute to the higher resistance of YH to R. solani than JG and were potential target genes to molecularly breed R. solani-resistant rice cultivar.
Collapse
Affiliation(s)
- Wei Shi
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng City, Jiangsu Province, 224002, P. R. China
| | - Shao-Lu Zhao
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng City, Jiangsu Province, 224002, P. R. China
| | - Kai Liu
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng City, Jiangsu Province, 224002, P. R. China
| | - Yi-Biao Sun
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng City, Jiangsu Province, 224002, P. R. China
| | - Zheng-Bin Ni
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng City, Jiangsu Province, 224002, P. R. China
| | - Gui-Yun Zhang
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng City, Jiangsu Province, 224002, P. R. China
| | - Hong-Sheng Tang
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng City, Jiangsu Province, 224002, P. R. China
| | - Jing-Wen Zhu
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng City, Jiangsu Province, 224002, P. R. China
| | - Bai-Jie Wan
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng City, Jiangsu Province, 224002, P. R. China
| | - Hong-Qin Sun
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng City, Jiangsu Province, 224002, P. R. China
| | - Jin-Ying Dai
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng City, Jiangsu Province, 224002, P. R. China
| | - Ming-Fa Sun
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng City, Jiangsu Province, 224002, P. R. China.
| | - Guo-Hong Yan
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng City, Jiangsu Province, 224002, P. R. China.
| | - Ai-Min Wang
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng City, Jiangsu Province, 224002, P. R. China.
| | - Guo-Yong Zhu
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng City, Jiangsu Province, 224002, P. R. China.
| |
Collapse
|