1
|
Yin C, Morita T, Parrish JZ. A cell atlas of the larval Aedes aegypti ventral nerve cord. Neural Dev 2024; 19:2. [PMID: 38297398 PMCID: PMC10829479 DOI: 10.1186/s13064-023-00178-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/28/2023] [Indexed: 02/02/2024] Open
Abstract
Mosquito-borne diseases account for nearly 1 million human deaths annually, yet we have a limited understanding of developmental events that influence host-seeking behavior and pathogen transmission in mosquitoes. Mosquito-borne pathogens are transmitted during blood meals, hence adult mosquito behavior and physiology have been intensely studied. However, events during larval development shape adult traits, larvae respond to many of the same sensory cues as adults, and larvae are susceptible to infection by many of the same disease-causing agents as adults. Hence, a better understanding of larval physiology will directly inform our understanding of physiological processes in adults. Here, we use single cell RNA sequencing (scRNA-seq) to provide a comprehensive view of cellular composition in the Aedes aegypti larval ventral nerve cord (VNC), a central hub of sensory inputs and motor outputs which additionally controls multiple aspects of larval physiology. We identify more than 35 VNC cell types defined in part by neurotransmitter and neuropeptide expression. We also explore diversity among monoaminergic and peptidergic neurons that likely control key elements of larval physiology and developmental timing, and identify neuroblasts and immature neurons, providing a view of neuronal differentiation in the VNC. Finally, we find that larval cell composition, number, and position are preserved in the adult abdominal VNC, suggesting studies of larval VNC form and function will likely directly inform our understanding adult mosquito physiology. Altogether, these studies provide a framework for targeted analysis of VNC development and neuronal function in Aedes aegypti larvae.
Collapse
Affiliation(s)
- Chang Yin
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
- Division of Education, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, 02543, USA
| | - Takeshi Morita
- Division of Education, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, 02543, USA
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY, 10065, USA
- Howard Hughes Medical Institute, New York, NY, 10065, USA
| | - Jay Z Parrish
- Department of Biology, University of Washington, Seattle, WA, 98195, USA.
- Division of Education, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, 02543, USA.
| |
Collapse
|
2
|
James S, Santos M. The Promise and Challenge of Genetic Biocontrol Approaches for Malaria Elimination. Trop Med Infect Dis 2023; 8:201. [PMID: 37104327 PMCID: PMC10140850 DOI: 10.3390/tropicalmed8040201] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/15/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
Malaria remains an ongoing public health challenge, with over 600,000 deaths in 2021, of which approximately 96% occurred in Africa. Despite concerted efforts, the goal of global malaria elimination has stalled in recent years. This has resulted in widespread calls for new control methods. Genetic biocontrol approaches, including those focused on gene-drive-modified mosquitoes (GDMMs), aim to prevent malaria transmission by either reducing the population size of malaria-transmitting mosquitoes or making the mosquitoes less competent to transmit the malaria parasite. The development of both strategies has advanced considerably in recent years, with successful field trials of several biocontrol methods employing live mosquito products and demonstration of the efficacy of GDMMs in insectary-based studies. Live mosquito biocontrol products aim to achieve area-wide control with characteristics that differ substantially from current insecticide-based vector control methods, resulting in some different considerations for approval and implementation. The successful field application of current biocontrol technologies against other pests provides evidence for the promise of these approaches and insights into the development pathway for new malaria control agents. The status of technical development as well as current thinking on the implementation requirements for genetic biocontrol approaches are reviewed, and remaining challenges for public health application in malaria prevention are discussed.
Collapse
Affiliation(s)
- Stephanie James
- Foundation for the National Institutes of Health, North Bethesda, MD 20852, USA
| | | |
Collapse
|
3
|
Regulatory and policy considerations for the implementation of gene drive-modified mosquitoes to prevent malaria transmission. Transgenic Res 2023; 32:17-32. [PMID: 36920721 PMCID: PMC10102045 DOI: 10.1007/s11248-023-00335-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/20/2023] [Indexed: 03/16/2023]
Abstract
Gene drive-modified mosquitoes (GDMMs) are being developed as possible new tools to prevent transmission of malaria and other mosquito-borne diseases. To date no GDMMs have yet undergone field testing. This early stage is an opportune time for developers, supporters, and possible users to begin to consider the potential regulatory requirements for eventual implementation of these technologies in national or regional public health programs, especially as some of the practical implications of these requirements may take considerable planning, time and coordination to address. Several currently unresolved regulatory questions pertinent to the implementation of GDMMs are examined, including: how the product will be defined; what the registration/approval process will be for placing new GDMM products on the market; how the potential for transboundary movement of GDMMs can be addressed; and what role might be played by existing multinational bodies and agreements in authorization decisions. Regulation and policies applied for registration of other genetically modified organisms or other living mosquito products are assessed for relevance to the use case of GDMMs to prevent malaria in Africa. Multiple national authorities are likely to be involved in decision-making, according to existing laws in place within each country for certain product classes. Requirements under the Cartagena Protocol on Biodiversity will be considered relevant in most countries, as may existing regulatory frameworks for conventional pesticide, medical, and biocontrol products. Experience suggests that standard regulatory processes, evidence requirements, and liability laws differ from country to country. Regional mechanisms will be useful to address some of the important challenges.
Collapse
|