1
|
Application of a Novel Epitope- and Structure-Based Vaccinology-Assisted Fimbria-Toxin Multiepitope Fusion Antigen of Enterotoxigenic Escherichia coli for Development of Multivalent Vaccines against Porcine Postweaning Diarrhea. Appl Environ Microbiol 2020; 86:AEM.00274-20. [PMID: 32144103 DOI: 10.1128/aem.00274-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/02/2020] [Indexed: 11/20/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) strains producing K88 (F4) or F18 fimbriae and enterotoxins are the predominant cause of pig postweaning diarrhea (PWD). We recently identified neutralizing epitopes of fimbriae K88 and F18, heat-labile toxin (LT), heat-stable toxins type I (STa) and type II (STb), and Shiga toxin 2e (Stx2e). In this study, we explored a novel epitope- and structure-based vaccinology platform, multiepitope fusion antigen (MEFA), for PWD vaccine development. By using an epitope substitution LT toxoid, which lacks enterotoxicity but retains immunogenicity, as the backbone to present neutralizing epitopes of two ETEC fimbriae and four toxins, we generated PWD fimbria-toxin MEFA to mimic epitope native antigenicity. We then examined MEFA protein immunogenicity and evaluated MEFA application in PWD vaccine development. Mice subcutaneously immunized with PWD MEFA protein developed strong IgG responses to K88, F18, LT, and STb and moderate responses to the toxins Stx2e and STa. Importantly, MEFA-induced antibodies inhibited adherence of K88 or F18 fimbrial bacteria to pig intestinal cells and also neutralized LT, STa, STb, and Stx2e toxicity. These results indicated that PWD fimbria-toxin MEFA induced neutralizing antibodies against an unprecedent two fimbriae and four toxins and strongly suggested a potential application of this MEFA protein in developing a broadly protective PWD vaccine.IMPORTANCE ETEC-associated postweaning diarrhea (PWD) causes significant economic losses to swine producers worldwide. Currently, there is no effective prevention against PWD. A vaccine that blocks ETEC fimbriae (K88 and F18) from attaching to host receptors and prevents enterotoxins from stimulating water hypersecretion in pig small intestinal epithelial cells can effectively protect against PWD and significantly improves pig health and well-being. The fimbria-toxin MEFA generated from this study induced neutralizing antibodies against both ETEC fimbriae and all four ETEC toxins, suggesting a great potential of this fimbria-toxin MEFA in PWD vaccine development and further supporting the general application of this novel MEFA vaccinology platform for multivalent vaccine development.
Collapse
|
2
|
Ou B, Jiang B, Jin D, Yang Y, Zhang M, Zhang D, Zhao H, Xu M, Song H, Wu W, Chen M, Lu T, Huang J, Seo H, Garcia C, Zheng W, Guo W, Lu Y, Jiang Y, Yang S, Kaushik RS, Li X, Zhang W, Zhu G. Engineered Recombinant Escherichia coli Probiotic Strains Integrated with F4 and F18 Fimbriae Cluster Genes in the Chromosome and Their Assessment of Immunogenic Efficacy in Vivo. ACS Synth Biol 2020; 9:412-426. [PMID: 31944664 DOI: 10.1021/acssynbio.9b00430] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
F4 (K88) and F18 fimbriaed enterotoxigenic Escherichia coli (ETEC) are the predominant causes of porcine postweaning diarrhea (PWD), and vaccines are considered the most effective preventive approach against PWD. Since heterologous DNA integrated into bacterial chromosomes could be effectively expressed with stable inheritance, we chose probiotic EcNc (E. coli Nissle 1917 prototype cured of cryptic plasmids) as a delivery vector to express the heterologous F4 or both F4 and F18 fimbriae and sequentially assessed their immune efficacy of anti-F4 and F18 fimbriae in both murine and piglet models. Employing the CRISPR-cas9 technology, yjcS, pcadA, lacZ, yieN/trkD, maeB, and nth/tppB sites in the chromosome of an EcNc strain were targeted as integration sites to integrate F4 or F18 fimbriae cluster genes under the Ptet promotor to construct two recombinant integration probiotic strains (RIPSs), i.e., nth integration strain (EcNcΔnth/tppB::PtetF4) and multiple integration strain (EcNc::PtetF18x4::PtetF4x2). Expression of F4, both F4 and F18 fimbriae on the surfaces of two RIPSs, was verified with combined methods of agglutination assay, Western blot, and immunofluorescence microscopy. The recombinant strains have improved adherence to porcine intestinal epithelial cell lines. Mice and piglets immunized with the nth integration strain and multiple integration strain through gavage developed anti-F4 and both anti-F4 and anti-F18 IgG immune responses. Moreover, the serum antibodies from the immunized mice and piglets significantly inhibited the adherence of F4+ or both F4+ and F18+ ETEC wild-type strains to porcine intestinal cell lines in vitro, indicating the potential of RIPSs as promising probiotic strains plus vaccine candidates against F4+/F18+ ETEC infection.
Collapse
Affiliation(s)
- Bingming Ou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- College of Life Science, Zhaoqing University, Zhaoqing 526061, China
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou 225009, China
- Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, Kansas 66506, United States
| | - Boyu Jiang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou 225009, China
| | - Duo Jin
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou 225009, China
| | - Ying Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou 225009, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Minyu Zhang
- College of Life Science, Zhaoqing University, Zhaoqing 526061, China
| | - Dong Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou 225009, China
| | - Haizhou Zhao
- College of Life Science, Zhaoqing University, Zhaoqing 526061, China
| | - Mengxian Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou 225009, China
| | - Haoliang Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou 225009, China
| | - Wenwen Wu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou 225009, China
| | - Mingliang Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou 225009, China
| | - Ti Lu
- Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, Kansas 66506, United States
| | - Jiachen Huang
- Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, Kansas 66506, United States
| | - Hyesuk Seo
- Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, Kansas 66506, United States
- Department of Pathobiology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61802, United States
| | - Carolina Garcia
- Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, Kansas 66506, United States
| | - Wanglong Zheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou 225009, China
- Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, Kansas 66506, United States
| | - Weiyi Guo
- College of Life Science, Zhaoqing University, Zhaoqing 526061, China
| | - Yinhua Lu
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yu Jiang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Sheng Yang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Radhey S. Kaushik
- Biology and Microbiology Department, South Dakota State University, Brookings, South Dakota 57007, United States
| | - Xinchang Li
- College of Life Science, Zhaoqing University, Zhaoqing 526061, China
| | - Weiping Zhang
- Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, Kansas 66506, United States
- Department of Pathobiology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61802, United States
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou 225009, China
| |
Collapse
|
7
|
Goetstouwers T, Van Poucke M, Nguyen VU, Melkebeek V, Coddens A, Deforce D, Cox E, Peelman LJ. F4-related mutation and expression analysis of the aminopeptidase N gene in pigs. J Anim Sci 2014; 92:1866-73. [PMID: 24663207 PMCID: PMC7109699 DOI: 10.2527/jas.2013-7307] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Intestinal infections with F4 enterotoxigenic Escherichia coli (ETEC) are worldwide an important cause of diarrhea in neonatal and recently weaned pigs. Adherence of F4 ETEC to the small intestine by binding to specific receptors is mediated by F4 fimbriae. Porcine aminopeptidase N (ANPEP) was recently identified as a new F4 receptor. In this study, 7 coding mutations and 1 mutation in the 3′ untranslated region (3' UTR)were identified in ANPEP by reverse transcriptase (RT–) PCR and sequencing using 3 F4 receptor-positive (F4R+) and 2 F4 receptor-negative (F4R–) pigs, which were F4 phenotyped based on the MUC4 TaqMan, oral immunization, and the in vitro villous adhesion assay. Three potential differential mutations (g.2615C > T, g.8214A > G, and g.16875C > G) identified by comparative analysis between the 3 F4R+ and 2 F4R– pigs were genotyped in 41 additional F4 phenotyped pigs. However, none of these 3 mutations could be associated with F4 ETEC susceptibility. In addition, the RT-PCR experiments did not reveal any differential expression or alternative splicing in the small intestine of F4R+ and F4R– pigs. In conclusion, we hypothesize that the difference in F4 binding to ANPEP is due to modifications in its carbohydrate moieties.
Collapse
Affiliation(s)
- T Goetstouwers
- Laboratory of Animal Genetics, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, B-9820 Merelbeke, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Virulence profiles of enterotoxigenic, shiga toxin and enteroaggregative Escherichia coli in South African pigs. Trop Anim Health Prod 2013; 45:1399-405. [PMID: 23417826 DOI: 10.1007/s11250-013-0377-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2013] [Indexed: 10/27/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) and shiga toxin E. coli (STEC) are important causes of colibacillosis in piglets. Recently, enteroaggregative E. coli heat-stable enterotoxin 1 (EAST-1) has been implicated in pig diarrhoea. This study investigated the prevalence of enterotoxin [heat-labile toxins (LT), heat-stable toxin a (STa), heat-stable toxin b (STb)], shiga toxins (Stx1, Stx2, Stx2e), enteroaggregative heat-stable E. coli (EAST-1), associated fimbriae (F4, F5, F6, F41, F18ab, F18ac) and non-fimbrial adhesins [adhesin involved in diffuse adherence 1 (AIDA-1), attaching and effacing factor, porcine attaching- and effacing-associated factor] in South African pigs. A total of 263 E. coli strains were isolated from Landrace (n = 24), Large White (n = 126), Duroc (n = 28) and indigenous (n = 85) breeds of piglets aged between 9 and 136 days. PCR was used in the analysis. Virulent genes were detected in 40.3% of the isolates, of which 18.6, 0.4 and 17.5% were classified as ETEC, STEC and enteroaggregative E. coli (EAEC), respectively. Individual genes were found in the following proportions: STb (19.01%), LT (0.4%), STa (3.4%), St2xe (1.1%) and EAST-1 (20.2%) toxins. None of the tested fimbriae were detected in ETEC and STEC isolates. About one third of the ETEC and STEC isolates was tested negative for both fimbrial and non-fimbrial adhesins. Twenty-five pathotypes from ETEC-, EAEC- and STEC-positive strains were identified. Pathotypes EAST-1 (30.2%), STb (13.2%) and STb/AIDA-1 (10.4%) were most prevalent. The study provided insight on possible causes of colibacillosis in South African pigs.
Collapse
|
10
|
Ruan X, Zhang W. Oral immunization of a live attenuated Escherichia coli strain expressing a holotoxin-structured adhesin-toxoid fusion (1FaeG-FedF-LTA₂:5LTB) protected young pigs against enterotoxigenic E. coli (ETEC) infection. Vaccine 2013; 31:1458-63. [PMID: 23375979 DOI: 10.1016/j.vaccine.2013.01.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 01/02/2013] [Accepted: 01/15/2013] [Indexed: 10/27/2022]
Abstract
ETEC strains expressing K88 (F4) or F18 fimbriae and enterotoxins are the predominant cause of porcine post-weaning diarrhea (PWD). PWD continues causing significant economic losses to swine producers worldwide. Vaccines effectively protecting against PWD are needed. Our recent study revealed that a tripartite adhesin-toxin monomer (FaeG-FedF-LT(A2-B)) elicited protective antibodies. In this study, we constructed a new adhesin-toxoid fusion, expressed it as a 1A:5B holotoxin-structured antigen (1FaeG-FedF-LT(192A2):5LT(B)) in an avirulent Escherichia coli strain, and evaluated its vaccine potential in pig challenge studies. Piglets orally inoculated with this live strain showed no adverse effects but developed systemic and mucosal antibodies that neutralized cholera toxin and inhibited adherence of K88 and F18 fimbriae in vitro. Moreover, the immunized piglets, when were challenged with ETEC strain 3030-2 (K88ac/LT/STb), had significant fewer bacteria colonized at small intestines and did not develop diarrhea; whereas the control piglets developed severe diarrhea and died. These results indicated the 1FaeG-FedF-LT(192A2):5LT(B) fusion antigen induced protective antiadhesin and antitoxin immunity in pigs, and suggested a live attenuated vaccine can be potentially developed against porcine ETEC diarrhea. Additionally, presenting antigens in a holotoxin structure to target host local mucosal immunity can be used in vaccine development against other enteric diseases.
Collapse
Affiliation(s)
- Xiaosai Ruan
- Veterinary & Biomedical Sciences Department, The Center for Infectious Disease Research & Vaccinology, South Dakota State University, Brookings, SD 57007, USA
| | | |
Collapse
|
11
|
Several enteropathogens are circulating in suckling and newly weaned piglets suffering from diarrhea in the province of Villa Clara, Cuba. Trop Anim Health Prod 2012; 45:435-40. [PMID: 22843242 PMCID: PMC7089418 DOI: 10.1007/s11250-012-0236-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2012] [Indexed: 11/11/2022]
Abstract
Intestinal contents of suckling (n = 45) and newly weaned (n = 45) piglets, suffering from diarrhea in the province of Villa Clara in Cuba, were tested for viral, bacterial, and parasitic enteropathogens from May to June 2008. At least one enteropathogen was identified in 53.3 % of piglets and enterotoxigenic Escherichia coli (ETEC; 25.6 %) was the major pathogen; mostly STa+/STb+ or F4+/STa+/STb+ ETEC were isolated. The overall occurrence of the rest of pathogens was 10 % for transmissible gastroenteritis virus (TGEV) and Cryptosporidium parvum, 6.7 % for rotavirus A and Isospora suis, 5.6 % for α-toxigenic Clostridium perfringens, 3.3 % for verotoxigenic E. coli (VTEC), and 2.2 % for Salmonella enterica subspecies enterica serovar Newport. TGEV and α-toxigenic C. perfringens were only identified in suckling piglets, while Salmonella Newport and VTEC were only detected in weaned pigs. Porcine epidemic diarrhea virus (PEDV), β-toxigenic C. perfringens, Eimeria spp., and helminths were not identified. Eight kinds of mixed infections were detected in 25 % of enteropathogen positive piglets. ETEC was present in 10 of 12 mixed infections, and TGEV infections were never combined. This survey demonstrates that several enteropathogens are circulating in piggeries located in the province of Villa Clara in Cuba, and that is necessary to improve surveillance, prevention, and control of enteric infections in order to increase production efficiency.
Collapse
|
13
|
A tripartite fusion, FaeG-FedF-LT(192)A2:B, of enterotoxigenic Escherichia coli (ETEC) elicits antibodies that neutralize cholera toxin, inhibit adherence of K88 (F4) and F18 fimbriae, and protect pigs against K88ac/heat-labile toxin infection. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:1593-9. [PMID: 21813665 DOI: 10.1128/cvi.05120-11] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) strains expressing K88 (F4) or F18 fimbriae and heat-labile (LT) and/or heat-stable (ST) toxins are the major cause of diarrhea in young pigs. Effective vaccines inducing antiadhesin (anti-K88 and anti-F18) and antitoxin (anti-LT and anti-ST) immunity would provide broad protection to young pigs against ETEC. In this study, we genetically fused nucleotides coding for peptides from K88ac major subunit FaeG, F18 minor subunit FedF, and LT toxoid (LT(192)) A2 and B subunits for a tripartite adhesin-adhesin-toxoid fusion (FaeG-FedF-LT(192)A2:B). This fusion was used for immunizations in mice and pigs to assess the induction of antiadhesin and antitoxin antibodies. In addition, protection by the elicited antiadhesin and antitoxin antibodies against a porcine ETEC strain was evaluated in a gnotobiotic piglet challenge model. The data showed that this FaeG-FedF-LT(192)A2:B fusion elicited anti-K88, anti-F18, and anti-LT antibodies in immunized mice and pigs. In addition, the anti-porcine antibodies elicited neutralized cholera toxin and inhibited adherence against both K88 and F18 fimbriae. Moreover, immunized piglets were protected when challenged with ETEC strain 30302 (K88ac/LT/STb) and did not develop clinical disease. In contrast, all control nonvaccinated piglets developed severe diarrhea and dehydration after being challenged with the same ETEC strain. This study clearly demonstrated that this FaeG-FedF-LT(192)A2:B fusion antigen elicited antibodies that neutralized LT toxin and inhibited the adherence of K88 and F18 fimbrial E. coli strains and that this fusion could serve as an antigen for vaccines against porcine ETEC diarrhea. In addition, the adhesin-toxoid fusion approach used in this study may provide important information for developing effective vaccines against human ETEC diarrhea.
Collapse
|