Effect of nutritional stress on physiological parameters and seminal attributes of native-crossbred ram in semi-arid tropics.
Trop Anim Health Prod 2021;
53:274. [PMID:
33880659 DOI:
10.1007/s11250-021-02729-9]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 04/12/2021] [Indexed: 10/21/2022]
Abstract
A prolific three-breed (Malpura, Patanwadi, and Garole) cross Avishaan sheep has been developed in the semi-arid zone to improve farmer's income. Nutritional scarcity is a major limitation in animal husbandry during the dearth period of semi-arid tropics. Therefore, before the inaugural launch of the breed into the field, a study was designed to evaluate the effect of nutritional stress on physiological parameters and seminal attributes of native-crossbred rams in semi-arid tropics. Thus, 16 native adapted (Malpura) and 16 native-crossbred rams were equally distributed into four groups, namely, native control (G1), native nutritional stress (G2), native-crossbred control (G3), and native-crossbred nutritional stress (G4). Both the control groups (G1 and G3) were kept on their maintenance requirement as per their body weight, whereas the nutritional stress groups (G2 and G4) were provided 30% less than their maintenance requirement. The body weight of G4 decline (P<0.05) as compared to their initial weight. The plasma glucose level of G2 and G4 reduced (P<0.05) in comparison with G1 and G3, respectively. The total motile sperm percentage, rapid motile sperm percentage, and sperm viability decrease significantly (P<0.05) within the acceptable limit in native-crossbred rams (G4) under nutritional scarcity. However, the similar blood biochemical along with acceptable seminal attributes of all the rams reflected that native-crossbred rams can cope with the nutritional scarcity in semi-arid tropics and have the potential to contribute to the sustainable small ruminant production system for livelihood security in this region.
Collapse