1
|
Rodrigues GRD, Cyrillo JNSG, Mota LFM, Schmidt PI, Valente JPS, Oliveira ES, Albuquerque LG, Brito LF, Mercadante MEZ. Effect of genomic regions harboring putative lethal haplotypes on reproductive performance in closed experimental selection lines of Nellore cattle. Sci Rep 2025; 15:4113. [PMID: 39900660 DOI: 10.1038/s41598-025-88501-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/28/2025] [Indexed: 02/05/2025] Open
Abstract
Lethal alleles are mutations in the genome that cause embryonic losses in affected homozygous embryos and, therefore, can negatively influence reproduction rates in commercial populations. Thus, this study aimed to identify genomic regions containing potential lethal haplotypes in Nellore breed; identify candidate genes located within these regions; and investigate the reproductive performance of heterozygous carriers of lethal haplotypes in Nellore cattle. Forty-five genomic regions harboring putative lethal haplotypes were identified, which overlap with 360 genes. Gene ontology analyses of these genes revealed biological processes associated with the development of sexual traits in males and females, key functions of the immune system, energy homeostasis, and embryonic development. The gene networks were involved in metabolic pathways including ovarian steroidogenesis, oocyte meiosis, and insulin secretion. Matings between carrier dam and carrier sire led to a reduction of up to -203.46% in pregnancy success probability, an increase of 275.15% in probability of pregnancy loss, 295.03% for stillbirth occurrence, and 301.40% for pre-weaning mortality when compared to non-carrier dam and sire matings. The results highlight the importance of identifying animals that are carriers of lethal haplotypes to avoid the propagation of these haplotypes in the population.
Collapse
Affiliation(s)
- Gustavo R D Rodrigues
- School of Agriculture and Veterinary Science, São Paulo State University, Jaboticabal, 14884-900, SP, Brazil.
- Institute of Animal Science, Beef Cattle Research Center, Sertãozinho, 14174-000, SP, Brazil.
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| | - Joslaine N S G Cyrillo
- Institute of Animal Science, Beef Cattle Research Center, Sertãozinho, 14174-000, SP, Brazil
| | - Lúcio F M Mota
- School of Agriculture and Veterinary Science, São Paulo State University, Jaboticabal, 14884-900, SP, Brazil
| | - Patrícia I Schmidt
- School of Agriculture and Veterinary Science, São Paulo State University, Jaboticabal, 14884-900, SP, Brazil
| | - Júlia P S Valente
- School of Agriculture and Veterinary Science, São Paulo State University, Jaboticabal, 14884-900, SP, Brazil
- Institute of Animal Science, Beef Cattle Research Center, Sertãozinho, 14174-000, SP, Brazil
| | - Eduarda S Oliveira
- School of Agriculture and Veterinary Science, São Paulo State University, Jaboticabal, 14884-900, SP, Brazil
| | - Lúcia G Albuquerque
- School of Agriculture and Veterinary Science, São Paulo State University, Jaboticabal, 14884-900, SP, Brazil
- National Council for Science and Technological Development, Brasilia, 71605-001, DF, Brazil
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Maria E Z Mercadante
- School of Agriculture and Veterinary Science, São Paulo State University, Jaboticabal, 14884-900, SP, Brazil.
- Institute of Animal Science, Beef Cattle Research Center, Sertãozinho, 14174-000, SP, Brazil.
- National Council for Science and Technological Development, Brasilia, 71605-001, DF, Brazil.
| |
Collapse
|
2
|
Orzuna-Orzuna JF, Godina-Rodríguez JE, Garay-Martínez JR, Lara-Bueno A. Capsaicin as a Dietary Additive for Dairy Cows: A Meta-Analysis on Performance, Milk Composition, Digestibility, Rumen Fermentation, and Serum Metabolites. Animals (Basel) 2024; 14:1075. [PMID: 38612314 PMCID: PMC11010920 DOI: 10.3390/ani14071075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
This study aimed to evaluate the effects of dietary supplementation with capsaicin (CAP) on productive performance, milk composition, nutrient digestibility, ruminal fermentation, and serum metabolites of dairy cows using a meta-analytical approach. The database included 13 studies, from which the response variables of interest were obtained. Data were analyzed using a random effects model, and results were expressed as weighted mean differences between treatments supplemented with and without CAP. Dietary supplementation with CAP increased (p < 0.05) dry matter intake, milk yield, feed efficiency, milk fat yield, and milk fat content. However, CAP supplementation did not affect (p > 0.05) milk protein and lactose yield, milk urea nitrogen, or milk somatic cell count. Greater (p < 0.05) apparent digestibility of dry matter and crude protein was observed in response to the dietary inclusion of CAP. Likewise, supplementation with CAP increased (p < 0.05) the rumen concentration of total volatile fatty acids. In contrast, CAP supplementation did not affect (p > 0.05) ruminal pH or the ruminal concentration of ammonia nitrogen, acetate, propionate, and butyrate. In blood serum, CAP supplementation increased (p < 0.05) the glucose concentration and decreased (p < 0.05) the concentration of non-esterified fatty acids. However, CAP supplementation did not affect (p > 0.05) the serum concentration of urea and beta-hydroxybutyrate. In conclusion, capsaicin can be used as a dietary additive to improve the productive performance, milk composition, and nutrient digestibility in dairy cows and, at the same time, improve the ruminal concentration of total volatile fatty acids and serum levels of glucose and non-esterified fatty acids.
Collapse
Affiliation(s)
| | - Juan Eduardo Godina-Rodríguez
- Campo Experimental Uruapan, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Av. Latinoamérica 1001, Uruapan C.P. 60150, Michoacán, Mexico;
| | - Jonathan Raúl Garay-Martínez
- Campo Experimental Las Huastecas, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Altamira C.P. 89610, Tamaulipas, Mexico;
| | - Alejandro Lara-Bueno
- Departamento de Zootecnia, Universidad Autónoma Chapingo, Chapingo C.P. 56230, Mexico;
| |
Collapse
|
3
|
Treatment of Inactive Ovaries of Holstein Dairy Cows by Epidural Injection of GnRH Analogue (Receptal) and Its Impact on the Reproductive Hormones, Oxidant/Antioxidant Profile and Micro and Macro-Elements Profile. Animals (Basel) 2023; 13:ani13040653. [PMID: 36830440 PMCID: PMC9951676 DOI: 10.3390/ani13040653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
This study was designed to evaluate a new therapeutic approach for inactive ovaries based on the epidural administration of a GnRH agonist (Receptal) and an investigation of the impact of this treatment on the hormonal, oxidant/antioxidant and micro- and macro-element profiles. Sixty cows with postpartum anestrus were divided into two groups: the first group (group Repid, n = 30) was administered an epidural injection of Receptal, while the second group (group Cepid, n = 30) received saline and was considered the control group. Evaluation of hormonal (progesterone, FSH, LH, testosterone, and cortisol), oxidant/antioxidant (MDA, SOD, GPx and TAC) as well as micro- and macroelement (calcium, phosphorus, manganese and magnesium) profiles was done in serum. The results showed that the epidural injection of Receptal has the potential to induce estrus response and conception incidence in treated cows. Compared to the control group, progesterone, FSH, and LH concentrations were significantly increased in the treated group, whereas testosterone and cortisol decreased (p < 0.05) following treatment. In addition, the treated group had greater TAC and GPx concentrations than the control group. Serum concentrations of magnesium increased (p < 0.05) following receptal treatment, but differences in other minerals were not detected. This research suggests a novel, effective method of treating inactive ovaries with epidural infusion of a GnRH agonist.
Collapse
|
4
|
An Update on Applications of Cattle Mesenchymal Stromal Cells. Animals (Basel) 2022; 12:ani12151956. [PMID: 35953945 PMCID: PMC9367612 DOI: 10.3390/ani12151956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Among livestock species, cattle are crucially important for the meat and milk production industry. Cows can be affected by different pathologies, such as mastitis, endometritis and lameness, which can negatively affect either food production or reproductive efficiency. The use of mesenchymal stromal cells (MSCs) is a valuable tool both in the treatment of various medical conditions and in the application of reproductive biotechnologies. This review provides an update on state-of-the-art applications of bovine MSCs to clinical treatments and reproductive biotechnologies. Abstract Attention on mesenchymal stromal cells (MSCs) research has increased in the last decade mainly due to the promising results about their plasticity, self-renewal, differentiation potential, immune modulatory and anti-inflammatory properties that have made stem cell therapy more clinically attractive. Furthermore, MSCs can be easily isolated and expanded to be used for autologous or allogenic therapy following the administration of either freshly isolated or previously cryopreserved cells. The scientific literature on the use of stromal cells in the treatment of several animal health conditions is currently available. Although MSCs are not as widely used for clinical treatments in cows as for companion and sport animals, they have the potential to be employed to improve productivity in the cattle industry. This review provides an update on state-of-the-art applications of bovine MSCs to clinical treatments and reproductive biotechnologies.
Collapse
|
5
|
Song Y, Cheng J, Yu H, Wang Z, Bai Y, Xia C, Xu C. Early Warning for Ovarian Diseases Based on Plasma Non-esterified Fatty Acid and Calcium Concentrations in Dairy Cows. Front Vet Sci 2021; 8:792498. [PMID: 34957286 PMCID: PMC8692658 DOI: 10.3389/fvets.2021.792498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/17/2021] [Indexed: 12/02/2022] Open
Abstract
Inactive ovaries (IO) and ovarian (follicular or luteal) cysts (FC or LC) are two common ovarian diseases leading to infertility in dairy cattle. Both disorders are associated with altered metabolites and hormones. There are currently no known effective biomarkers that can be used for early diagnosis of ovarian diseases. The purpose of this study was to identify the plasma biomarkers of ovarian diseases in Holstein dairy cows that facilitate an early diagnosis of the diseases and control its progression. The experiment was performed from 3 weeks postpartum and last for 7 weeks. Seventy-six multiparous Holstein cows (mean age, 4.36 years; weight, 635.63 kg) were divided into healthy control group (HC, n = 22), FC group (n = 18), LC group (n = 18) and IO group (n = 18) by rectal palpation or ultrasonography during the last 2 weeks before trial end. Blood was collected via tail vein for measurement of plasma energy metabolites, liver function indicators, minerals, and hormones at 3 and 8 weeks postpartum. Data were analyzed by Mann-Whitney U, Kruskal-Wallis, Spearman correlation, binary logistic regression analysis and receiver operating characteristic analysis, where applicable. At 8 weeks postpartum, FC cows had a more severe body condition score loss and these had greater levels of non-esterified fatty acids (NEFA) and estradiol, and lesser levels of alanine aminotransferase (ALT), progesterone and insulin-like growth factor 1 (IGF-1) levels than HC cows (P < 0.05). LC cows had a lower milk yield, higher NEFA and progesterone levels, and lower calcium, phosphorus and magnesium levels than HC cows (P < 0.05). IO cows had a lower body condition score, higher NEFA levels, and lower ALT, calcium, phosphorus, magnesium, estradiol, progesterone and IGF-1 levels than HC cows (P < 0.05). At 3 weeks postpartum, cows with ovarian diseases had greater (P < 0.05) concentrations of NEFA, and lesser concentrations of ALT, calcium, phosphorus and IGF-1 than HC cows. Early warning values for ovarian diseases were plasma NEFA concentrations >0.50 mmol/L, or calcium concentrations <2.02 mmol/L. Therefore, plasma NEFA and calcium could be used as early-warning indicators for ovarian diseases in dairy cows.
Collapse
Affiliation(s)
- Yuxi Song
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jiaxin Cheng
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hang Yu
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Zhijie Wang
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yunlong Bai
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Cheng Xia
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Chuang Xu
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|