1
|
Antanaitis R, Džermeikaitė K, Krištolaitytė J, Armonavičiūtė E, Arlauskaitė S, Girdauskaitė A, Rutkauskas A, Baumgartner W. Effects of Bacillus subtilis on Growth Performance, Metabolic Profile, and Health Status in Dairy Calves. Animals (Basel) 2024; 14:2489. [PMID: 39272274 PMCID: PMC11394282 DOI: 10.3390/ani14172489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
This study focused on assessing whether the inclusion of probiotics (B. subtilis) as feed additives during the preweaning stage can enhance the body weight and metabolic condition of neonatal calves. A total of 50 Holstein calves, all born on the same farm, were randomly divided into two homogeneous treatment groups after birth. The calves in the control group (CG) were fed a milk replacer (n = 25) (13 females and 12 males) and those in the B. subtilis-supplement-treated group (TG), (n = 25) (13 females and 12 males) were fed a milk replacer with 7.5 mL/calf/day of B. subtilis probiotic (complied with the manufacturer's guidelines). The probiotic was administered 24 h post-birth, signifying the start of the experimental period. It took one month to collect the animals. Body weight was measured at birth for all animals. A local veterinarian, working on the farm, conducted daily health checks of the calves, recording health parameters and any antibiotic treatments. Blood samples were collected from each calf at birth and 30, 60, and 90 days by puncturing the jugular vein using 10 mL evacuated serum tubes before morning feeding. Significant differences in body weight were observed between the CG and the TG at 30, 60, and 90 days of age. At 30 days, the TG had a 4.11% higher average body weight than the CG (54.38 kg vs. 52.71 kg). At 60 days, the TG's average weight was 3.75% higher (79.21 kg vs. 76.34 kg), and at 90 days, the TG had a 2.91% higher average weight (112.87 kg vs. 109.67 kg). At 30 days of age, the TG showed significantly lower AST activity, with a 41.12% decrease compared to the CG (51.02 IU/L vs. 72.00 IU/L). Conversely, GGT activity was significantly higher in the TG by 64.68% (40.64 IU/L vs. 14.35 IU/L). Phosphorus concentration at 30 days was also significantly higher in the TG by 9.36% (3.27 mmol/L vs. 2.99 mmol/L). Additionally, the TG had a significantly lower total protein concentration, with a 21.63% decrease at 30 days (46.32 g/L vs. 56.34 g/L) and a 20.28% decrease at 60 days (48.32 g/L vs. 58.12 g/L) compared to the CG. These findings indicate that dairy calves given conventional milk replacer along with a daily dose of 7.5 mL of B. subtilis probiotic experienced enhanced growth performance and a more favourable metabolic profile during the first 90 days of their lives.
Collapse
Affiliation(s)
- Ramūnas Antanaitis
- Large Animal Clinic, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės Str. 18, LT-47181 Kaunas, Lithuania
| | - Karina Džermeikaitė
- Large Animal Clinic, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės Str. 18, LT-47181 Kaunas, Lithuania
| | - Justina Krištolaitytė
- Large Animal Clinic, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės Str. 18, LT-47181 Kaunas, Lithuania
| | - Emilija Armonavičiūtė
- Large Animal Clinic, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės Str. 18, LT-47181 Kaunas, Lithuania
| | - Samanta Arlauskaitė
- Large Animal Clinic, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės Str. 18, LT-47181 Kaunas, Lithuania
| | - Akvilė Girdauskaitė
- Large Animal Clinic, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės Str. 18, LT-47181 Kaunas, Lithuania
| | - Arūnas Rutkauskas
- Large Animal Clinic, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės Str. 18, LT-47181 Kaunas, Lithuania
| | - Walter Baumgartner
- Clinical Centre for Ruminant and Camelid Medicine, University of Veterinary Medicine, Veterinaerplatz 1, A-1210 Vienna, Austria
| |
Collapse
|
2
|
Goetz BM, Abeyta MA, Rodriguez-Jimenez S, Opgenorth J, McGill JL, Fensterseifer SR, Arias RP, Lange AM, Galbraith EA, Baumgard LH. Effects of a multistrain Bacillus-based direct-fed microbial on gastrointestinal permeability and biomarkers of inflammation during and following feed restriction in mid-lactation Holstein cows. J Dairy Sci 2024; 107:6192-6210. [PMID: 38395402 DOI: 10.3168/jds.2023-24352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/25/2024] [Indexed: 02/25/2024]
Abstract
Objectives were to evaluate the effects of a multistrain Bacillus-based (Bacillus subtilis and Bacillus pumilus blend) direct-fed microbial (DFM) on production, metabolism, inflammation biomarkers and gastrointestinal tract (GIT) permeability during and following feed restriction (FR) in mid-lactation Holstein cows. Multiparous cows (n = 36; 138 ± 53 DIM) were randomly assigned to 1 of 3 dietary treatments: (1) control (CON; 7.5 g/d rice hulls; n = 12), (2) DFM10 (10 g/d Bacillus DFM, 4.9 × 109 cfu/d; n = 12) or 3) DFM15 (15 g/d Bacillus DFM, 7.4 × 109 cfu/d; n = 12). Before study initiation, cows were fed their respective treatments for 32 d. Cows continued to receive treatments during the trial, which consisted of 3 experimental periods (P): P1 (5 d) served as baseline for P2 (5 d), during which all cows were restricted to 40% of P1 DMI, and P3 (5 d), a "recovery" where cows were fed ad libitum. On d 4 of P1 and on d 2 and 5 of P2, GIT permeability was evaluated in vivo using the oral paracellular marker Cr-EDTA. As anticipated, FR decreased milk production, insulin, glucagon, and BUN but increased nonesterified fatty acids. During recovery, DMI rapidly increased on d 1 then subsequently decreased (4.9 kg) on d 2 before returning to baseline, whereas milk yield slowly increased but remained decreased (13%) relative to P1. The DFM10 cows had increased DMI and milk yield relative to DFM15 during P3 (10%). Overall, milk lactose content was increased in DFM cows relative to CON (0.10 percentage units), and DFM10 cows tended to have increased lactose yield relative to CON and DFM15 during P3 (8% and 10%, respectively). No overall treatment differences were observed for other milk composition variables. Circulating glucose was quadratically increased in DFM10 cows compared with CON and DFM15 during FR and recovery. Plasma Cr area under the curve was increased in all cows on d 2 (9%) and 5 (6%) relative to P1. Circulating LPS binding protein (LBP), serum amyloid A (SAA), and haptoglobin (Hp) increased in all cows during P2 compared with baseline (31%, 100%, and 9.0-fold, respectively). Circulating Hp concentrations continued to increase during P3 (274%). Overall, circulating LBP and Hp tended to be increased in DFM15 cows relative to DFM10 (29% and 81%, respectively), but no treatment differences were observed for SAA. Following feed reintroduction during P3, fecal pH initially decreased (0.62 units), but returned to baseline levels whereas fecal starch markedly increased (2.5-fold) and remained increased (82%). Absolute quantities of a fecal Butyryl-CoA CoA transferase (but) gene associated with butyrate synthesis, collected by fecal swab were increased in DFM10 cows compared with CON and DFM15 cows. In summary, FR increased GIT permeability, caused inflammation, and decreased production. Feeding DFM10 increased some key production and metabolism variables and upregulated a molecular biomarker of microbial hindgut butyrate synthesis, while DFM15 appeared to augment immune activation.
Collapse
Affiliation(s)
- B M Goetz
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - M A Abeyta
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | | | - J Opgenorth
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - J L McGill
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, IA 50011
| | | | - R P Arias
- United Animal Health Inc., Sheridan, IN 46069
| | - A M Lange
- Microbial Discovery Group, Oak Creek, WI 53154
| | | | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011.
| |
Collapse
|
3
|
Goetz BM, Abeyta MA, Rodriguez-Jimenez S, Mayorga EJ, Opgenorth J, Jakes GM, Freestone AD, Moore CE, Dickson DJ, Hergenreder JE, Baumgard LH. Effects of Bacillus subtilis PB6 supplementation on production, metabolism, inflammatory biomarkers, and gastrointestinal tract permeability in transition dairy cows. J Dairy Sci 2023; 106:9793-9806. [PMID: 37641308 DOI: 10.3168/jds.2023-23562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/16/2023] [Indexed: 08/31/2023]
Abstract
Objectives were to evaluate the effects of Bacillus subtilis PB6 (BSP) on gastrointestinal tract permeability, metabolism, inflammation, and production parameters in periparturient Holstein cows. Multiparous cows (n = 48) were stratified by previous 305-d mature equivalent milk yield and parity and assigned to 1 of 2 top-dressed dietary treatments 21 d before expected calving through 63 DIM: (1) control (CON; 13 g/d calcium carbonate; n = 24) or (2) BSP (13 g/d BSP; CLOSTAT, Kemin Industries, Des Moines, IA; n = 24). Gastrointestinal tract permeability was evaluated in vivo using the oral paracellular marker chromium (Cr)-EDTA. Effects of treatment, time, and treatment × time were assessed using PROC MIXED of SAS version 9.4 (SAS Institute Inc.). Prepartum dry matter intake (DMI) was unaffected by treatment; however, BSP supplementation decreased postpartum DMI relative to CON (0.7 kg). Milk yield, energy-corrected milk (ECM), fat-corrected milk (FCM), and solids-corrected milk (SCM) increased in BSP cows compared with CON (1.6, 1.8, 1.6, and 1.5 kg, respectively). Decreased DMI and increased production collectively improved feed efficiency of milk yield, ECM, FCM, and SCM for BSP cows (6, 5, 5, and 5%, respectively). No treatment differences were observed for concentrations of milk fat, protein, total solids, somatic cell count, somatic cell score, body weight, or body condition score. Milk urea nitrogen concentrations decreased (5%), whereas milk protein and lactose yield increased (5 and 2%, respectively) with BSP supplementation. Prepartum fecal pH did not differ among treatments; conversely, postpartum fecal pH was increased with BSP supplementation (0.09 pH units). Prepartum fecal dry matter percentage, starch, acetic acid, propionic acid, butyric acid, and ethanol did not differ among treatments. Postpartum concentrations of the aforementioned fecal parameters were also unaffected by treatment, but fecal propionic acid concentration was decreased (24%) in BSP cows relative to CON. Circulating glucose, nonesterified fatty acids, l-lactate, and insulin were similar between treatments both pre- and postpartum. Prepartum β-hydroxybutyrate (BHB) did not differ between treatments, but postpartum BSP supplementation decreased (21%) circulating BHB relative to CON. Regardless of treatment, inflammatory markers (serum amyloid A and haptoglobin) peaked immediately following parturition and progressively decreased with time, but this pattern was not influenced by treatment. Postpartum lipopolysaccharide binding protein tended to be decreased on d 3 in BSP relative to CON cows (19%). Neither treatment nor time affected Cr-EDTA area under the curve. In summary, supplementing BSP had no detectable effects prepartum, but increased key postpartum production parameters. Bacillus subtilis PB6 consistently increased postpartum fecal pH and decreased fecal propionate concentrations but did not appear to have an effect on gastrointestinal tract permeability.
Collapse
Affiliation(s)
- B M Goetz
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - M A Abeyta
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | | | - E J Mayorga
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - J Opgenorth
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - G M Jakes
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - A D Freestone
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - C E Moore
- Kemin Industries Inc., Des Moines, IA 50317
| | | | | | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011.
| |
Collapse
|