1
|
Wang X, Zhou Y, Xie D, Yin F, Liang Y, Luo X. Melatonin intervention to prevent nanomaterial exposure-induced damages: A systematic review and meta-analysis of in vitro and in vivo studies. J Appl Toxicol 2024. [PMID: 39090837 DOI: 10.1002/jat.4676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 08/04/2024]
Abstract
Given its antioxidant, anti-inflammatory, and antiapoptotic properties, melatonin (MEL), a health-caring food to improve sleep disorders, is hypothesized to protect against nanomaterial exposure-induced toxicity. However, the conclusion derived from different studies seemed inconsistent. A meta-analysis of all available preclinical studies was performed to examine the effects of MEL on nanomaterial-induced damages. Eighteen relevant studies were retrieved through searching five electronic databases up to December 2023. The meta-analysis showed that relative to control, MEL treatment significantly increased cell viability (standardized mean difference [SMD = 1.27]) and alleviated liver function (lowered AST [SMD = -3.89] and ALT [SMD = -5.89]), bone formation (enhanced BV/TV [SMD = 4.13] and lessened eroded bone surface [SMD = -5.40]), and brain nerve (inhibition of AChE activity [SMD = -3.60]) damages in animals. The protective mechanisms of MEL against damages caused by nanomaterial exposure were associated with its antiapoptotic (decreased Bax/Bcl-2 ratio [SMD = -4.50] and caspase-3 levels [dose <100 μM: SMD = -3.66]), antioxidant (decreased MDA [in vitro: SMD = -2.84; in vivo: SMD = -4.27]), and anti-inflammatory (downregulated TNF-α [in vitro: SMD = -5.41; in vivo: SMD = -3.21] and IL-6 [in vitro: SMD = -5.90; in vivo: SMD = -2.81]) capabilities. In conclusion, our study suggests that MEL should be supplemented to prevent damages in populations exposed to nanomaterials.
Collapse
Affiliation(s)
- Xuejiao Wang
- College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Yang Zhou
- School of Textile Science and Engineering/National Engineering Laboratory for Advanced Yarn and Clean Production, Wuhan Textile University, Wuhan, China
| | - Dongli Xie
- College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Fei Yin
- College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Yunxia Liang
- College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Xiaogang Luo
- College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| |
Collapse
|
2
|
Samal D, Khandayataray P, Sravani M, Murthy MK. Silver nanoparticle ecotoxicity and phytoremediation: a critical review of current research and future prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8400-8428. [PMID: 38182947 DOI: 10.1007/s11356-023-31669-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024]
Abstract
Silver nanoparticles (AgNPs) are widely used in various industries, including textiles, electronics, and biomedical fields, due to their unique optical, electronic, and antimicrobial properties. However, the extensive use of AgNPs has raised concerns about their potential ecotoxicity and adverse effects on the environment. AgNPs can enter the environment through different pathways, such as wastewater, surface runoff, and soil application and can interact with living organisms through adsorption, ingestion, and accumulation, causing toxicity and harm. The small size, high surface area-to-volume ratio, and ability to generate reactive oxygen species (ROS) make AgNPs particularly toxic. Various bioremediation strategies, such as phytoremediation, have been proposed to mitigate the toxic effects of AgNPs and minimize their impact on the environment. Further research is needed to improve these strategies and ensure their safety and efficacy in different environmental settings.
Collapse
Affiliation(s)
- Dibyaranjan Samal
- Department of Biotechnology, Sri Satya Sai University of Technical and Medical Sciences, Sehore, Bhopal, Madhya Pradesh, India
| | - Pratima Khandayataray
- Department of Biotechnology, Academy of Management and Information Technology, Utkal University, Bhubaneswar, 752057, Odisha, India
| | - Meesala Sravani
- Department of Computer Science and Engineering, GMR Institute of Technology, Rajam, 532127, India
| | - Meesala Krishna Murthy
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Punjab, 140401, India.
| |
Collapse
|
3
|
Azpeleta C, Delgado MJ, Metz JR, Flik G, de Pedro N. Melatonin as an anti-stress signal: effects on an acute stress model and direct actions on interrenal tissue in goldfish. Front Endocrinol (Lausanne) 2024; 14:1291153. [PMID: 38260137 PMCID: PMC10800973 DOI: 10.3389/fendo.2023.1291153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024] Open
Abstract
Background Melatonin is a key hormone in regulation of circadian rhythms, and involved in many rhythmic functions, such as feeding and locomotor activity. Melatonin reportedly counteracts stress responses in many vertebrates, including fish. However, targets for this action of melatonin and underlying mechanisms remain unknown. Results This study reports potential anti-stress properties of melatonin in goldfish (Carassius auratus), with a focus on its effect on plasma cortisol, food intake, and locomotor activity, all of them involved in the responses to stress exposure. Indeed, acute injection of melatonin counteracted stress-induced hypercortisolinemia and reduced food intake. The reduced locomotor activity following melatonin treatment suggests a possible sedative role in fish. To assess whether this anti-stress effects of melatonin involve direct actions on interrenal tissue, in vitro cultures of head kidney (containing the interrenal cortisol-producing tissue) were carried out in presence of ACTH, melatonin, and luzindole, an antagonist of melatonin receptors. Melatonin in vitro reduced ACTH-stimulated cortisol release, an effect attenuated by luzindole; this suggests the presence of specific melatonin receptors in interrenal tissue. Conclusions Our data support a role for melatonin as an anti-stress signal in goldfish, and suggest that the interrenal tissue of teleosts may be a plausible target for melatonin action decreasing cortisol production.
Collapse
Affiliation(s)
- Clara Azpeleta
- Departamento de Genética, Fisiología y Microbiología, Unidad Docente de Fisiología Animal, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Medicina, Facultad de Ciencias Biomédicas y de la Salud, Universidad Europea de Madrid, Madrid, Spain
| | - Mª Jesús Delgado
- Departamento de Genética, Fisiología y Microbiología, Unidad Docente de Fisiología Animal, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Juriaan R. Metz
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, Netherlands
| | - Gert Flik
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, Netherlands
| | - Nuria de Pedro
- Departamento de Genética, Fisiología y Microbiología, Unidad Docente de Fisiología Animal, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
4
|
Li Y, Yang Y, Li S, Ye Y, Du X, Liu X, Jiang Q, Che X. Effects of dietary melatonin on antioxidant and immune function of the Pacific white shrimp (Litopenaeus vannamei), as determined by transcriptomic analysis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 48:101146. [PMID: 37804799 DOI: 10.1016/j.cbd.2023.101146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/10/2023] [Accepted: 09/22/2023] [Indexed: 10/09/2023]
Abstract
Melatonin (MT) is regarded as an antioxidant and immunostimulant that can efficiently scavenge free radicals and activate antioxidant enzymes. The aim of this study was to investigate the effects of dietary MT on the growth performance and immune function of the Pacific white shrimp (Litopenaeus vannamei). Six groups of L. vannamei were supplemented with dietary MT at 0, 22.5, 41.2, 82.7, 165.1, and 329.2 mg/kg levels for 2 months. RNA-Seq analysis was performed to obtain transcriptome data of the control group and the group supplemented with dietary MT at 82.7 mg/kg BW. In total, 1220 DEGs (799 up-regulated and 421 down-regulated) were identified. Pathways and genes related to growth performance and immune function were verified by real-time quantitative polymerase chain reaction. The total hemocyte count, phagocytosis rate, and respiratory burst were significantly increased in the MT (82.7 mg/kg BW) group as compared to the control group. Analysis of antioxidant-related enzymes in the hepatopancreas showed that dietary MT (82.7 mg/kg BW) significantly increased activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase, while dietary MT at 41.2 mg/kg BW significantly increased activities of glutathione S-transferase, lysozyme (LZM), and phenoloxidase (PO). At the transcriptional level, dietary MT up-regulated expression levels of genes associated with antioxidant immunity and growth, which included PO, SOD, LZM, GPx, chitin synthase, ecdysone receptor, calcium-calmodulin dependent protein kinase I, and retinoid X receptor. In conclusion, dietary MT may improve the growth performance and immune function of L. vannamei to some extent.
Collapse
Affiliation(s)
- Yiming Li
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China
| | - Ying Yang
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Siwen Li
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Yucong Ye
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Xinglin Du
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Xingguo Liu
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China.
| | - Xuan Che
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China.
| |
Collapse
|
5
|
Ma SJ, Li C, Yan C, Liu N, Jiang GY, Yang HR, Yan HC, Li JY, Liu HL, Gao C. Melatonin alleviates early brain injury by inhibiting the NRF2-mediated ferroptosis pathway after subarachnoid hemorrhage. Free Radic Biol Med 2023; 208:555-570. [PMID: 37717795 DOI: 10.1016/j.freeradbiomed.2023.09.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023]
Abstract
Ferroptosis is a novel form of cell death that plays a critical role in the pathological and physiological processes of early brain injury following subarachnoid hemorrhage. Melatonin, as the most potent endogenous antioxidant, has shown strong protective effects against pathological changes following subarachnoid hemorrhage, but its impact on ferroptosis induced by subarachnoid hemorrhage remains unexplored. In our study, we established a subarachnoid hemorrhage model in male SD rats. We found that subarachnoid hemorrhage induced changes in ferroptosis-related indicators such as lipid peroxidation and iron metabolism, while intraperitoneal injection of melatonin (40 mg/kg) effectively ameliorated these changes to a certain degree. Moreover, in a subset of rats with subarachnoid hemorrhage who received pre-treatment via intravenous injection of the melatonin receptor antagonist Luzindole (1 mg/kg) and 4P-PDOT (1 mg/kg), we found that the protective effect of melatonin against subarachnoid hemorrhage includes inhibition of lipid peroxidation and reduction of iron accumulation depended on melatonin receptor 1B (MT2). Furthermore, our study demonstrated that melatonin inhibited neuronal ferroptosis by activating the NRF2 signaling pathway, as evidenced by in vivo inhibition of NRF2. In summary, melatonin acts through MT2 and activates NRF2 and downstream genes such as HO-1/NQO1 to inhibit ferroptosis in subarachnoid hemorrhage-induced neuronal injury, thereby improving neurological function in rats. These results suggest that melatonin is a promising therapeutic target for subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Sheng-Ji Ma
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Chen Li
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Cong Yan
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Nan Liu
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Guang-You Jiang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Hong-Rui Yang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Hao-Chen Yan
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Ji-Yi Li
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Huai-Lei Liu
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Cheng Gao
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China.
| |
Collapse
|
6
|
Moniruzzaman M, Kumar S, Mukherjee M, Chakraborty SB. Delineating involvement of MAPK/NF-κB pathway during mitigation of permethrin-induced oxidative damage in fish gills by melatonin. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 104:104312. [PMID: 37967690 DOI: 10.1016/j.etap.2023.104312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 07/18/2023] [Accepted: 11/09/2023] [Indexed: 11/17/2023]
Abstract
Present study evaluated involvement of transcription factors during permethrin-induced gill toxicity and its amelioration by melatonin. First, adult Notoptertus notopterus females were exposed to permethrin at nominal concentrations [C: 0.0, P1: 0.34, P2: 0.68 µg/L] for 15 days followed by intramuscular melatonin administration (100 µg/kg body weight) for 7 days. Gill MDA, XO, LDH levels increased, while Na+-K+-ATPase, SDH, cytochrome C oxidase levels decreased with increasing permethrin concentrations. Glutathione, SOD, CAT, GST, GRd levels increased in P1 than C, but decreased in P2 than P1, C. Melatonin administration restored gill enzyme and antioxidant levels in P1, P2. Next, isolated gill tissues were exposed to permethrin at 25, 50 µM doses along with melatonin administration (100 μg/mL). NF-κB, NRF2, Keap1, ERK, Akt, caspases protein expression changed significantly during permethrin-induced gill damage. Melatonin administration amended permethrin-induced molecular imbalance through modulation of caspase proteins and MAPK/NF-κB signal transduction pathway via melatonin receptor 1.
Collapse
Affiliation(s)
| | - Saheli Kumar
- Department of Zoology, University of Calcutta, Kolkata, India
| | - Mainak Mukherjee
- Department of Zoology, University of Calcutta, Kolkata, India; Department of Zoology, Fakir Chand College, Diamond Harbour, India
| | | |
Collapse
|
7
|
Yang Y, Xu W, Du X, Ye Y, Tian J, Li Y, Jiang Q, Zhao Y. Effects of dietary melatonin on growth performance, antioxidant capacity, and nonspecific immunity in crayfish, Cherax destructor. FISH & SHELLFISH IMMUNOLOGY 2023; 138:108846. [PMID: 37230307 DOI: 10.1016/j.fsi.2023.108846] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 05/27/2023]
Abstract
Melatonin (MT) is an indole hormone widely found in plants and animals. Many studies have shown that MT promotes the growth and immunity of mammals, fish, and crabs. However, the effect on commercial crayfish has not been demonstrated. The purpose of this study was to evaluate the effects of dietary MT on growth performance and innate immunity of Cherax destructor from three aspects of individual level, biochemical level, and molecular level after 8 weeks of culture. In this study, we found that MT supplementation increased weight gain rate, specific growth rate, and digestive enzyme activity in C. destructor compared to the control group. Dietary MT not only promoted the activity of T-AOC, SOD, and GR, increased the content of GSH, and decreased the content of MDA in the hepatopancreas, but also increased the content of hemocyanin and copper ions and AKP activity in hemolymph. Gene expression results showed that MT supplementation at appropriate doses increased the expression of cell cycle-regulated genes (CDK, CKI, IGF, and HGF) and non-specific immune genes (TRXR, HSP60, and HSP70). In conclusion, our study showed that adding MT to the diet improved growth performance, enhanced the antioxidant capacity of hepatopancreas, and immune parameters of hemolymph in C. destructor. In addition, our results showed that the optimal dietary supplementation dose of MT in C. destructor is 75-81 mg/kg.
Collapse
Affiliation(s)
- Ying Yang
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Wenyue Xu
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Xinglin Du
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Yucong Ye
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Jiangtao Tian
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Yiming Li
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai, 200092, China
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing, 210017, China
| | - Yunlong Zhao
- School of Life Science, East China Normal University, Shanghai, 200241, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
8
|
Nalika N, Waseem M, Kaushik P, Salman M, Andrabi SS, Parvez S. Role of melatonin and quercetin as countermeasures to the mitochondrial dysfunction induced by titanium dioxide nanoparticles. Life Sci 2023:121403. [PMID: 36669677 DOI: 10.1016/j.lfs.2023.121403] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/29/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
AIM Due to the growing commercialization of titanium dioxide nanoparticles (TNPs), it is necessary to use these particles in a manner that is safe, healthy and environmental friendly. Through reactive oxygen species (ROS) generation, it has been discovered that TNPs have a harmful effect on the brain. The aim of this study is to provide valuable insights into the possible mechanisms of TNPs induced mitochondrial dysfunction in brain and its amelioration by nutraceuticals, quercetin (QR) and melatonin (Mel) in in vitro and in vivo conditions. MATERIALS AND METHODS Whole brain mitochondrial sample was used for in-vitro evaluation. Pre-treatment of QR (30 μM) and Mel (100 μM) at 25 °C for 1 h was given prior to TNPs (50 μg/ml) exposure. For in-vivo study, male Wistar rats were divided into four groups. Group I was control and group II was exposed to TNPs (5 mg/kg b.wt., i.v.). QR (5 mg/kg b.wt.) and Mel (5 mg/kg b.wt.) were given orally as pre-treatment in groups III and IV, respectively. Biochemical parameters, neurobehavioural paradigms, mitochondrial respiration, neuronal architecture assessment were assessed. KEY FINDINGS QR and Mel restored the mitochondrial oxidative stress biomarkers in both the studies. Additionally, these nutraceuticals resuscitated the neurobehavioural alterations and restored the neuronal architecture alterations in TNPs exposed rats. The mitochondrial dysfunction induced by TNPs was also ameliorated by QR and Mel by protecting the mitochondrial complex activity and mitochondrial respiration rate. SIGNIFICANCE Results of the study demonstrated that QR and Mel ameliorated mitochondrial mediated neurotoxic effects induced by TNPs exposure.
Collapse
Affiliation(s)
- Nandini Nalika
- Department of Toxicology, School of Life and Chemical Sciences, Jamia Hamdard, New Delhi 110 062, India
| | - Mohammad Waseem
- Department of Toxicology, School of Life and Chemical Sciences, Jamia Hamdard, New Delhi 110 062, India
| | - Pooja Kaushik
- Department of Toxicology, School of Life and Chemical Sciences, Jamia Hamdard, New Delhi 110 062, India
| | - Mohd Salman
- Department of Toxicology, School of Life and Chemical Sciences, Jamia Hamdard, New Delhi 110 062, India
| | - Syed Suhail Andrabi
- Department of Toxicology, School of Life and Chemical Sciences, Jamia Hamdard, New Delhi 110 062, India
| | - Suhel Parvez
- Department of Toxicology, School of Life and Chemical Sciences, Jamia Hamdard, New Delhi 110 062, India.
| |
Collapse
|
9
|
Babaei M, Tayemeh MB, Jo MS, Yu IJ, Johari SA. Trophic transfer and toxicity of silver nanoparticles along a phytoplankton-zooplankton-fish food chain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156807. [PMID: 35750161 DOI: 10.1016/j.scitotenv.2022.156807] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/04/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
This study evaluated the bioconcentration metrics, organ-specific distribution, and trophic consequences of silver nanoparticles along a Dunaliella salina-Artemia salina-Poecilia reticulata food chain. To this end, accumulation, tissue-specific distribution, bioconcentration and biomagnification factors, and trophic toxicity of AgNPs were quantitatively investigated along di- and tri-trophic food chains. Overall, silver accumulation increased markedly in intestine and liver tissues, carcass, and embryos of guppy fish with rising exposure concentrations and reducing trophic levels. Following trophic and waterborne exposure, AgNPs illustrated a regular tendency in following order: intestine > liver > embryos > carcass. BCF displayed values of 826, 131, and ≈ 1000 for microalgae, brine shrimp, and guppy fish, respectively. Moreover, BMF showed values <1.00 for 48-h post-hatched nauplii and guppy fish received AgNPs-exposed phytoplankton, yet >1.00 for the liver and whole body of guppy fish treated with AgNPs-exposed nauplii through algae and water, indicating that AgNPs could be biomagnified from the second to third trophic level, but not from the first to second or third levels. Furthermore, the waterborne and trophic exposure of AgNPs considerably induced oxidative stress and reproductive toxicity. Together, this study demonstrated that AgNPs could be biomagnified across trophic chain and consequently cause trophic toxicity.
Collapse
Affiliation(s)
- Morteza Babaei
- Department of Fisheries, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Kurdistan, Iran.
| | - Mohammad Behzadi Tayemeh
- Department of Fisheries, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Kurdistan, Iran.
| | - Mi Seong Jo
- Aerosol Toxicology Research Center, HCTm, Co., Icheon, Republic of Korea.
| | - Il Je Yu
- HCT, Co. Ltd, Icheon, Republic of Korea.
| | - Seyed Ali Johari
- Department of Fisheries, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Kurdistan, Iran.
| |
Collapse
|
10
|
High-Temperature Stress Effect on the Red Cusk-Eel (Geypterus chilensis) Liver: Transcriptional Modulation and Oxidative Stress Damage. BIOLOGY 2022; 11:biology11070990. [PMID: 36101373 PMCID: PMC9312335 DOI: 10.3390/biology11070990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 01/02/2023]
Abstract
Simple Summary The red cusk-eel (Genypterus chilensis) is a native Chilean species important for aquaculture diversification in Chile. The effect of high-temperature stress on the liver, a key organ for fish metabolism, is unknown. In this study we determined for the first time the effects of high-temperature stress on the liver of red cusk-eel. The results showed that high-temperature stress increased hepatic enzyme activity in the plasma of stressed fish. Additionally, this stressor generated oxidative damage in liver, and generated a transcriptional response with 1239 down-regulated and 1339 up-regulated transcripts associated with several processes, including unfolded protein response, heat shock response and oxidative stress, among others. Together, these results indicate that high-temperature stress generates a relevant impact on liver, with should be considered for the aquaculture and fisheries industry of this species under a climate change scenario. Abstract Environmental stressors, such as temperature, are relevant factors that could generate a negative effect on several tissues in fish. A key fish species for Chilean aquaculture diversification is the red cusk-eel (Genypterus chilensis), a native fish for which knowledge on environmental stressors effects is limited. This study evaluated the effects of high-temperature stress on the liver of red cusk-eel in control (14 °C) and high-temperature (19 °C) groups using multiple approaches: determination of plasmatic hepatic enzymes (ALT, AST, and AP), oxidative damage evaluation (AP sites, lipid peroxidation, and carbonylated proteins), and RNA-seq analysis. High-temperature stress generated a significant increase in hepatic enzyme activity in plasma. In the liver, a transcriptional regulation was observed, with 1239 down-regulated and 1339 up-regulated transcripts. Additionally, high-temperature stress generated oxidative stress in the liver, with oxidative damage and transcriptional modulation of the antioxidant response. Furthermore, an unfolded protein response was observed, with several pathways enriched, as well as a heat shock response, with several heat shock proteins up regulated, suggesting candidate biomarkers (i.e., serpinh1) for thermal stress evaluation in this species. The present study shows that high-temperature stress generated a major effect on the liver of red cusk-eel, knowledge to consider for the aquaculture and fisheries of this species.
Collapse
|