1
|
Wang S, Zhang W, Tian B, Hu Y, Li T, Cui X, Zhang L, Luo X. Regulation Progression on Ellagic Acid Improving Poultry Production Performance by Regulating Redox Homeostasis, Inflammatory Response, and Cell Apoptosis. Animals (Basel) 2024; 14:3009. [PMID: 39457938 PMCID: PMC11505372 DOI: 10.3390/ani14203009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
It has been approximately 2000 years since the medicinal homologous theory, which primarily holds that food has the same therapeutic value as medicine in order to improve the health of both humans and animals. In recent years, this theory has also been proposed to be used in poultry breeding. Ellagic acid (EA), a natural compound primarily extracted from medicinal homologous foods such as raspberries and pomegranates, is reported to have incomparable advantages in improving the production performance and disease resistance of poultry due to its pharmacological properties, which regulate the processes of redox homeostasis, inflammatory response, and cell apoptotic death. However, the application and research of EA in poultry production are still in the initial stage, and the potential mechanisms of its biological functions affecting animal health have not been clearly identified, which requires more attention worldwide. This mini-review collects the latest 10-year achievements of research on the effects of EA on poultry health, aiming to promote the practical application of EA in maintaining animal health and formulating corresponding targeted strategies.
Collapse
Affiliation(s)
- Shengchen Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China; (S.W.); (W.Z.)
| | - Wenjun Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China; (S.W.); (W.Z.)
| | - Bing Tian
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China; (S.W.); (W.Z.)
| | - Yun Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China; (S.W.); (W.Z.)
| | - Tingting Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China; (S.W.); (W.Z.)
| | - Xiaoyan Cui
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China; (S.W.); (W.Z.)
| | - Liyang Zhang
- State Key Laboratory of Animal Nutrition, Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xugang Luo
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China; (S.W.); (W.Z.)
| |
Collapse
|
2
|
Gul H, Habib G, Khan IM, Rahman SU, Khan NM, Wang H, Khan NU, Liu Y. Genetic resilience in chickens against bacterial, viral and protozoal pathogens. Front Vet Sci 2022; 9:1032983. [PMID: 36439341 PMCID: PMC9691405 DOI: 10.3389/fvets.2022.1032983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/28/2022] [Indexed: 06/13/2024] Open
Abstract
The genome contributes to the uniqueness of an individual breed, and enables distinctive characteristics to be passed from one generation to the next. The allelic heterogeneity of a certain breed results in a different response to a pathogen with different genomic expression. Disease resistance in chicken is a polygenic trait that involves different genes that confer resistance against pathogens. Such resistance also involves major histocompatibility (MHC) molecules, immunoglobulins, cytokines, interleukins, T and B cells, and CD4+ and CD8+ T lymphocytes, which are involved in host protection. The MHC is associated with antigen presentation, antibody production, and cytokine stimulation, which highlight its role in disease resistance. The natural resistance-associated macrophage protein 1 (Nramp-1), interferon (IFN), myxovirus-resistance gene, myeloid differentiation primary response 88 (MyD88), receptor-interacting serine/threonine kinase 2 (RIP2), and heterophile cells are involved in disease resistance and susceptibility of chicken. Studies related to disease resistance genetics, epigenetics, and quantitative trait loci would enable the identification of resistance markers and the development of disease resistance breeds. Microbial infections are responsible for significant outbreaks and have blighted the poultry industry. Breeding disease-resistant chicken strains may be helpful in tackling pathogens and increasing the current understanding on host genetics in the fight against communicable diseases. Advanced technologies, such as the CRISPR/Cas9 system, whole genome sequencing, RNA sequencing, and high-density single nucleotide polymorphism (SNP) genotyping, aid the development of resistant breeds, which would significantly decrease the use of antibiotics and vaccination in poultry. In this review, we aimed to reveal the recent genetic basis of infection and genomic modification that increase resistance against different pathogens in chickens.
Collapse
Affiliation(s)
- Haji Gul
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Gul Habib
- Department of Microbiology, Abbottabad University of Science and Technology, Abbottabad, Pakistan
| | - Ibrar Muhammad Khan
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Sajid Ur Rahman
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Nazir Muhammad Khan
- Department of Zoology, University of Science and Technology, Bannu, Pakistan
| | - Hongcheng Wang
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Najeeb Ullah Khan
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan
| | - Yong Liu
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| |
Collapse
|