1
|
Beduleva L, Sidorov A, Fomina K, Terentiev A, Menshikov I, Shklyaeva N, Ivanov P, Varaksin V. Experimental rat models for Hashimoto's thyroiditis. J Endocrinol Invest 2024; 47:1205-1214. [PMID: 38010598 DOI: 10.1007/s40618-023-02240-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 11/04/2023] [Indexed: 11/29/2023]
Abstract
PURPOSE Hashimoto's thyroiditis (HT) is an autoimmune thyroid disease characterized by T lymphocyte-mediated destruction of thyroid follicles. To study the pathogenesis of HT and the efficacy of new substances for its treatment, an easily obtained and adequate to the human disease experimental model is needed. The aim of our study was to find out whether it is possible to induce experimental autoimmune thyroiditis (EAT) similar to Hashimoto's thyroiditis by injecting with thyroglobulin (Tg) without using agents that enhance its thyroiditogenicity and without taking into account the genetic sensitivity of animals. METHODS Wistar rats were immunized with freshly isolated rat Tg or porcine Tg. In 8 weeks, histological studies of the thyroid and parathyroid glands were performed. Thyroid function and total serum calcium level were also evaluated. RESULTS Immunization with both rat and porcine freshly isolated Tg caused T lymphocytic infiltration of the thyroid gland, thyroid follicle atrophy and degradation in Wistar rats. EAT caused by porcine Tg was characterized by greater severity than EAT induced with rat Tg. In 55% of rats with porcine Tg-induced EAT, oxyphilic metaplasia was detected in the parathyroid glands. In addition, low total serum calcium was observed in these rats. CONCLUSION Two rat models of autoimmune thyroiditis were obtained. EAT caused in Wistar rats by immunization with rat Tg is similar to Hashimoto's thyroiditis. EAT induced with porcine Tg was accompanied by oxyphil cell metaplasia in the parathyroids and hypocalcemia.
Collapse
Affiliation(s)
- L Beduleva
- Laboratory of Molecular and Cell Immunology, Department of Immunology and Cell Biology, Udmurt State University, 1 Universitetskaya St., Izhevsk, Russian Federation, 426034.
- Laboratory of Biocompatible Materials, Udmurt Federal Research Center UB RAS, 34 T. Baramzinoy St., Izhevsk, Russian Federation, 426067.
| | - A Sidorov
- Laboratory of Molecular and Cell Immunology, Department of Immunology and Cell Biology, Udmurt State University, 1 Universitetskaya St., Izhevsk, Russian Federation, 426034
- Laboratory of Biocompatible Materials, Udmurt Federal Research Center UB RAS, 34 T. Baramzinoy St., Izhevsk, Russian Federation, 426067
| | - K Fomina
- Laboratory of Molecular and Cell Immunology, Department of Immunology and Cell Biology, Udmurt State University, 1 Universitetskaya St., Izhevsk, Russian Federation, 426034
- Laboratory of Biocompatible Materials, Udmurt Federal Research Center UB RAS, 34 T. Baramzinoy St., Izhevsk, Russian Federation, 426067
| | - A Terentiev
- Laboratory of Molecular and Cell Immunology, Department of Immunology and Cell Biology, Udmurt State University, 1 Universitetskaya St., Izhevsk, Russian Federation, 426034
- Laboratory of Biocompatible Materials, Udmurt Federal Research Center UB RAS, 34 T. Baramzinoy St., Izhevsk, Russian Federation, 426067
| | - I Menshikov
- Laboratory of Molecular and Cell Immunology, Department of Immunology and Cell Biology, Udmurt State University, 1 Universitetskaya St., Izhevsk, Russian Federation, 426034
- Laboratory of Biocompatible Materials, Udmurt Federal Research Center UB RAS, 34 T. Baramzinoy St., Izhevsk, Russian Federation, 426067
| | - N Shklyaeva
- Laboratory of Molecular and Cell Immunology, Department of Immunology and Cell Biology, Udmurt State University, 1 Universitetskaya St., Izhevsk, Russian Federation, 426034
| | - P Ivanov
- Laboratory of Molecular and Cell Immunology, Department of Immunology and Cell Biology, Udmurt State University, 1 Universitetskaya St., Izhevsk, Russian Federation, 426034
| | - V Varaksin
- Laboratory of Biocompatible Materials, Udmurt Federal Research Center UB RAS, 34 T. Baramzinoy St., Izhevsk, Russian Federation, 426067
| |
Collapse
|
2
|
Geng C, Liu J, Guo B, Liu K, Gong P, Wang B, Wan Q, Sun L, Zhao J, Song Y. High lymphocyte signature genes expression in parathyroid endocrine cells and its downregulation linked to tumorigenesis. EBioMedicine 2024; 102:105053. [PMID: 38471398 PMCID: PMC10945207 DOI: 10.1016/j.ebiom.2024.105053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND To date, because of the difficulty in obtaining normal parathyroid gland samples in human or in animal models, our understanding of this last-discovered organ remains limited. METHODS In the present study, we performed a single-cell transcriptome analysis of six normal parathyroid and eight parathyroid adenoma samples using 10 × Genomics platform. FINDINGS We have provided a detailed expression atlas of parathyroid endocrine cells. Interestingly, we found an exceptional high expression levels of CD4 and CD226 in parathyroid endocrine cells, which were even higher than those in lymphocytes. This unusual expression of lymphocyte markers in parathyroid endocrine cells was associated with the depletion of CD4 T cells in normal parathyroid glands. Moreover, CD4 and CD226 expression in endocrine cells was significantly decreased in parathyroid adenomas, which was associated with a significant increase in Treg counts. Finally, along the developmental trajectory, we discovered the loss of POMC, ART5, and CES1 expression as the earliest signature of parathyroid hyperplasia. INTERPRETATION We propose that the loss of CD4 and CD226 expression in parathyroid endocrine cells, coupled with an elevated number of Treg cells, could be linked to the pathogenesis of parathyroid adenoma. Our data also offer valuable information for understanding the noncanonical function of CD4 molecule. FUNDING This work was supported by the National Key R&D Program of China (2022YFA0806100), National Natural Science Foundation of China (82130025, 82270922, 31970636, 32211530422), Shandong Provincial Natural Science Foundation of China (ZR2020ZD14), Innovation Team of Jinan (2021GXRC048) and the Outstanding University Driven by Talents Program and Academic Promotion Program of Shandong First Medical University (2019LJ007).
Collapse
Affiliation(s)
- Chong Geng
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324 Jingwu Road, Jinan, Shandong 250021, China
| | - Junjun Liu
- Department of Endocrinology, Jinan Central Hospital Affiliated to Shandong First Medical University, No.105 Jiefang Road, Jinan, Shandong 250013, China; Shandong Institute of Endocrine and Metabolic Diseases, Shandong First Medical University, No.324 Jingwu Road, Jinan, Shandong 250021, China
| | - Bingzhou Guo
- College of Artificial Intelligence and Big Data for Medical Sciences, Shandong First Medical University, No.6699 Qingdao Road Jinan, Shandong 250021, China
| | - Kailin Liu
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324 Jingwu Road, Jinan, Shandong 250021, China
| | - Pengfei Gong
- College of Artificial Intelligence and Big Data for Medical Sciences, Shandong First Medical University, No.6699 Qingdao Road Jinan, Shandong 250021, China
| | - Bao Wang
- Shandong Institute of Endocrine and Metabolic Diseases, Shandong First Medical University, No.324 Jingwu Road, Jinan, Shandong 250021, China
| | - Qiang Wan
- Department of Endocrinology, Jinan Central Hospital Affiliated to Shandong First Medical University, No.105 Jiefang Road, Jinan, Shandong 250013, China.
| | - Liang Sun
- College of Artificial Intelligence and Big Data for Medical Sciences, Shandong First Medical University, No.6699 Qingdao Road Jinan, Shandong 250021, China.
| | - Jiajun Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324 Jingwu Road, Jinan, Shandong 250021, China; Shandong Clinical Research Center of Diabetes and Metabolic Diseases, No.324 Jingwu Road, Jinan, Shandong 250021, China; Shandong Institute of Endocrine and Metabolic Diseases, Shandong First Medical University, No.324 Jingwu Road, Jinan, Shandong 250021, China; Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, No.324 Jingwu Road, Jinan, Shandong 250021, China.
| | - Yongfeng Song
- Department of Endocrinology, Jinan Central Hospital Affiliated to Shandong First Medical University, No.105 Jiefang Road, Jinan, Shandong 250013, China; Shandong Clinical Research Center of Diabetes and Metabolic Diseases, No.324 Jingwu Road, Jinan, Shandong 250021, China; Shandong Institute of Endocrine and Metabolic Diseases, Shandong First Medical University, No.324 Jingwu Road, Jinan, Shandong 250021, China; Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, No.324 Jingwu Road, Jinan, Shandong 250021, China.
| |
Collapse
|
3
|
Wang Y, Liu Y, Li N, Xu K, Zhang W. Quantitative application of dual-phase 99mTc-sestamibi SPECT/CT imaging of parathyroid lesions: identification of optimal timing in secondary hyperparathyroidism. EJNMMI Phys 2023; 10:29. [PMID: 37079194 PMCID: PMC10119365 DOI: 10.1186/s40658-023-00548-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/07/2023] [Indexed: 04/21/2023] Open
Abstract
PURPOSE In this retrospective study, we compared the maximum standardized uptake values (SUVmax) of parathyroid lesions and the target-to-background ratio (TBR) of parathyroid lesions to thyroid tissue in early-phase single-photon emission computed tomography/computed tomography (SPECT/CT) versus delayed-phase SPECT/CT in patients with secondary hyperparathyroidism (SHPT) in order to determine the optimal timing of 99mTc- methoxyisobutylisonitrile (99mTc-MIBI) SPECT/CT imaging. METHODS Seventeen patients with a history of chronic kidney failure stage 5 on hemodialysis, underwent pre-operative parathyroid scintigraphy for detection and localization of parathyroid lesions. Retrospective analysis was conducted for lesions with focal accumulation of 99mTc-MIBI. All patients underwent dual-phase 99mTc-MIBI parathyroid scintigraphy and dual-phase SPECT/CT. SUVmax of parathyroid lesions and thyroid tissues was measured. RESULTS Mean SUVmax of parathyroid lesions was 4.86 on early-phase and 2.58 on delayed-phase SPECT/CT, respectively. Mean TBR was 1.14 on early phase and 1.48 on delayed-phase SPECT/CT, respectively. Statistically significant differences in SUVmax and TBR between dual-phase SPECT/CT were observed (P < 0.001). CONCLUSIONS Delayed-phase SPECT/CT in SHPT is required because of the better image contrast.
Collapse
Affiliation(s)
- Yuhua Wang
- Department of Nuclear Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ye Liu
- Department of Nuclear Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Na Li
- Department of Nuclear Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kang Xu
- Department of Nuclear Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wanchun Zhang
- Department of Nuclear Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
4
|
Wang Y, Liu Y, Li N, Zhang W. Comparison of biochemical markers and technetium 99m methoxyisobutylisonitrile imaging in primary and secondary hyperparathyroidism. Front Endocrinol (Lausanne) 2023; 14:1094689. [PMID: 37051197 PMCID: PMC10083424 DOI: 10.3389/fendo.2023.1094689] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/20/2023] [Indexed: 03/29/2023] Open
Abstract
OBJECTIVE To investigate the differences in biochemical marker levels and the extent of lesion visualization on technetium 99m methoxyisobutylisonitrile (99mTc-MIBI) imaging between primary hyperparathyroidism (PHPT) and secondary hyperparathyroidism (SHPT). METHODS Nineteen patients with PHPT and 14 patients with SHPT were enrolled in the study, all of whom underwent routine 99mTc-MIBI dual-phase planar imaging, single-photon emission computed tomography combined with computed tomography (SPECT/CT fusion) imaging, and serum biochemical and hormonal investigations prior to surgery. The target-to-non-target (T/NT) ratios were calculated based on images from the early and delayed phases of 99mTc-MIBI planar imaging and also based on SPECT/CT fusion imaging. The volume of the parathyroid glands was measured following their excision. RESULTS A total of 62 parathyroid glands were removed: 14 parathyroid adenomas and five parathyroid carcinomas in PHPT patients; and 18 parathyroid adenomas, 17 parathyroid hyperplasia lesions, and eight instances of nodular hyperplasia with adenoma in SHPT patients. The median volume of the lesions in PHPT and SHPT was 1.69 cm3 and 0.52 cm3 respectively, and the difference between them was statistically significant (P = 0.001). The median T/NT ratios calculated at the early phase of 99mTc-MIBI planar imaging, the delayed phase of 99mTc-MIBI planar imaging, and the subsequent SPECT/CT fusion imaging were 1.51, 1.34, and 2.75, respectively, in PHPT, and 1.46, 1.30, and 1.38, in SHPT, respectively. The T/NT ratio difference between PHPT and SHPT on the SPECT/CT fusion imaging was statistically significant (P = 0.002). The histopathology subtypes of the lesions were associated with significant differences in two areas: the T/NT ratios on the SPECT/CT fusion imaging and the volume of the lesions (P=0.002, P<0.001). CONCLUSION The proportion of positive findings on 99mTc-MIBI dual-phase planar imaging and the T/NT ratios of 99mTc-MIBI SPECT/CT fusion imaging were higher in PHPT than in SHPT. The volume of parathyroid lesions in SHPT was smaller than in PHPT.
Collapse
Affiliation(s)
- Yuhua Wang
- Department of Nuclear Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ye Liu
- Department of Nuclear Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Na Li
- Department of Nuclear Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wanchun Zhang
- Department of Nuclear Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Wanchun Zhang,
| |
Collapse
|
5
|
Hametner S, Silvaieh S, Thurnher M, Dal-Bianco A, Cetin H, Ponleitner M, Zebenholzer K, Pemp B, Trattnig S, Rössler K, Berger T, Lassmann H, Hainfellner JA, Bsteh G. A case of primary optic pathway demyelination caused by oncocytic oligodendrogliopathy of unknown origin. Acta Neuropathol Commun 2022; 10:160. [DOI: 10.1186/s40478-022-01462-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/13/2022] [Indexed: 11/11/2022] Open
Abstract
AbstractWe report the case of a 22-year-old woman presenting with an acute onset of dizziness, gait dysbalance and blurred vision. Magnetic resonance imaging included 3 Tesla and 7 Tesla imaging and revealed a T2-hyperintense, T1-hypointense, non-contrast-enhancing lesion strictly confined to the white matter affecting the right optic radiation. An extensive ophthalmologic examination yielded mild quadrantanopia but no signs of optic neuropathy. The lesion was biopsied. The neuropathological evaluation revealed a demyelinating lesion with marked tissue vacuolization and granular myelin disintegration accompanied by mild T cell infiltration and a notable absence of myelin uptake by macrophages. Oligodendrocytes were strikingly enlarged, displaying oncocytic characteristics and showed cytoplasmic accumulation of mitochondria, which had mildly abnormal morphology on electron microscopy. The diagnosis of multiple sclerosis was excluded. Harding's disease, a variant of Leber's hereditary optic neuropathy, was then suspected. However, neither PCR for relevant mutations nor whole exome sequencing yielded known pathogenetic mutations in the patient's genome. We present a pattern of demyelinating tissue injury of unknown etiology with an oncocytic change of oligodendrocytes and a lack of adequate phagocytic response by macrophages, which to the best of our knowledge, has not been described before.
Collapse
|
6
|
Naveh-Many T, Volovelsky O. Parathyroid Cell Proliferation in Secondary Hyperparathyroidism of Chronic Kidney Disease. Int J Mol Sci 2020; 21:ijms21124332. [PMID: 32570711 PMCID: PMC7352987 DOI: 10.3390/ijms21124332] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
Secondary hyperparathyroidism (SHP) is a common complication of chronic kidney disease (CKD) that correlates with morbidity and mortality in uremic patients. It is characterized by high serum parathyroid hormone (PTH) levels and impaired bone and mineral metabolism. The main mechanisms underlying SHP are increased PTH biosynthesis and secretion as well as increased glandular mass. The mechanisms leading to parathyroid cell proliferation in SHP are not fully understood. Reduced expressions of the receptors for calcium and vitamin D contribute to the disinhibition of parathyroid cell proliferation. Activation of transforming growth factor-α-epidermal growth factor receptor (TGF-α-EGFR), nuclear factor kappa B (NF-kB), and cyclooxygenase 2- prostaglandin E2 (Cox2-PGE2) signaling all correlate with parathyroid cell proliferation, underlining their roles in the development of SHP. In addition, the mammalian target of rapamycin (mTOR) pathway is activated in parathyroid glands of experimental SHP rats. Inhibition of mTOR by rapamycin prevents and corrects the increased parathyroid cell proliferation of SHP. Mice with parathyroid-specific deletion of all miRNAs have a muted increase in serum PTH and fail to increase parathyroid cell proliferation when challenged by CKD, suggesting that miRNA is also necessary for the development of SHP. This review summarizes the current knowledge on the mechanisms of parathyroid cell proliferation in SHP.
Collapse
Affiliation(s)
- Tally Naveh-Many
- Minerva Center for Calcium and Bone Metabolism, Nephrology Services, Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel;
- The Wohl Institute for Translational Medicine, Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Oded Volovelsky
- The Wohl Institute for Translational Medicine, Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel
- Pediatric Nephrology Unit and Research Lab, Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel
- Correspondence: ; Tel.: +972-26777213
| |
Collapse
|