1
|
Zhai Y, Luo C, Qin N, Cao H, Dong C, Huang Z, Huang D, Wang F, Wei W, Li J, Yang J, Lu X, Huang Z, Wang W. Predictive value of combining urinary N-acetyl-β-D-glucosaminidase and serum homocysteine for contrast-induced nephropathy in patients after percutaneous coronary intervention. Front Cardiovasc Med 2024; 11:1423836. [PMID: 39228665 PMCID: PMC11368722 DOI: 10.3389/fcvm.2024.1423836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/01/2024] [Indexed: 09/05/2024] Open
Abstract
Background Contrast-induced nephropathy (CIN) can lead to serious complications following percutaneous coronary intervention (PCI). Urine N-Acetyl-β-D-glucosaminidase (uNAG) and serum homocysteine (sHCY) are both potential predictors for CIN detection, but their combination has not been explored. We aimed to combine uNAG and sHCY as predictors for the early detection of CIN and for prognosis prediction in patients after PCI. Methods A total of 232 consecutive patients who underwent PCI at a university hospital were recruited for this study. According to the European Society of Urology and Reproduction (ESUR) criterion, CIN is defined as an elevation of serum creatinine (sCr) by ≥25% or ≥0.5 mg/dl from baseline within 48 h. We assessed the use of individual biomarkers (uNAG and sHCY) measured around PCI and their combinations for CIN detection and prognosis prediction. Receiver operating characteristic curves (ROC) and area under the curve (AUC) were used to evaluate the predictive efficiency of potential predictors. Results In total, 54 (23.28%) patients developed CIN. Concentrations of uNAG and sHCY increased significantly in CIN subjects (p < 0.05) than non-CIN. CIN could be predicted by uNAG and sHCY but not by creatinine at an early stage. At pre-PCI, 0, 12, 24, and 48 h after PCI, the AUC-ROC value of uNAG in calculating total CIN was 0.594, 0.603, 0.685, 0.657, and 0.648, respectively. The AUC-ROC value of sHCY in calculating total CIN was 0.685, 0.726, 0.771, 0.755, and 0.821, respectively. The panel of uNAG plus sHCY detected CIN with significantly higher accuracy than either individual biomarker alone and earlier than sCr. For detecting total CIN, this panel yielded AUC-ROCs of 0.693, 0.754, 0.826, 0.796, and 0.844 at pre-PCI, 0, 12, 24, and 48 h after PCI, respectively, which were superior to those of the individual biomarkers. For predicting the incidence of major adverse cardiovascular events (MACE) within 30 days to 12 months, the AUC-ROC values for uNAG and sHCY measured before discharge were 0.637 and 0.826, respectively. The combined panel yielded an AUC-ROC of 0.832. The combined detection did not significantly enhance the predictive capability for MACE in patients with CIN. The CIN group and the non-CIN group showed no significant difference in the Coronary Heart Disease Intensive Care Unit (CCU) stay time, hospital stay time, demand for renal replacement therapy, CCU mortality rate, and in-hospital mortality rate. Conclusions The uNAG and sHCY panel demonstrated better sensitivity and specificity for predicting the diagnosis and prognosis of CIN in patients after PCI, earlier than sCr. The combination of these biomarkers revealed a significantly superior discriminative performance for CIN detection and prognosis compared to using uNAG or sHCY alone.
Collapse
Affiliation(s)
- Yiling Zhai
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Emergency, Affiliated Liutie Central Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
- Guangxi University Key Laboratory of Emergency Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Molecular Diagnosis and Application, Affiliated Liutie Central Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Changjun Luo
- Key Laboratory of Molecular Diagnosis and Application, Affiliated Liutie Central Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
- Department of Cardiovascular Medicine, Affiliated Liutie Central Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Nianying Qin
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Guangxi University Key Laboratory of Emergency Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Hongying Cao
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Guangxi University Key Laboratory of Emergency Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Chunyang Dong
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Guangxi University Key Laboratory of Emergency Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhou Huang
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Guangxi University Key Laboratory of Emergency Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Dongling Huang
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Guangxi University Key Laboratory of Emergency Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Fan Wang
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Guangxi University Key Laboratory of Emergency Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Wanxia Wei
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Guangxi University Key Laboratory of Emergency Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jincheng Li
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Guangxi University Key Laboratory of Emergency Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jie Yang
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Guangxi University Key Laboratory of Emergency Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xueling Lu
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Guangxi University Key Laboratory of Emergency Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhengzhuang Huang
- Department of Emergency, The First People’s Hospital of Nanning, Nanning, Guangxi, China
| | - Wei Wang
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Guangxi University Key Laboratory of Emergency Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
2
|
Mo C, Huang Q, Li L, Long Y, Shi Y, Lu Z, Wu N, Li Q, Zeng H, Li G, Qiu L, Gui C, Ji Q. High-mobility group box 1 and its related receptors: potential therapeutic targets for contrast-induced acute kidney injury. Int Urol Nephrol 2024; 56:2291-2299. [PMID: 38438703 DOI: 10.1007/s11255-024-03981-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/13/2024] [Indexed: 03/06/2024]
Abstract
Percutaneous coronary intervention (PCI) is a crucial diagnostic and therapeutic approach for coronary heart disease. Contrast agents' exposure during PCI is associated with a risk of contrast-induced acute kidney injury (CI-AKI). CI-AKI is characterized by a sudden decline in renal function occurring as a result of exposure to intravascular contrast agents, which is associated with an increased risk of poor prognosis. The pathophysiological mechanisms underlying CI-AKI involve renal medullary hypoxia, direct cytotoxic effects, endoplasmic reticulum stress, inflammation, oxidative stress, and apoptosis. To date, there is no effective therapy for CI-AKI. High-mobility group box 1 (HMGB1), as a damage-associated molecular pattern molecule, is released extracellularly by damaged cells or activated immune cells and binds to related receptors, including toll-like receptors and receptor for advanced glycation end product. In renal injury, HMGB1 is expressed in renal tubular epithelial cells, macrophages, endothelial cells, and glomerular cells, involved in the pathogenesis of various kidney diseases by activating its receptors. Therefore, this review provides a theoretical basis for HMGB1 as a therapeutic intervention target for CI-AKI.
Collapse
Affiliation(s)
- Changhua Mo
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region and Research Center of Cardiovascular Disease, Guangxi Academy of Medical Sciences, Nanning, China
| | - Qili Huang
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region and Research Center of Cardiovascular Disease, Guangxi Academy of Medical Sciences, Nanning, China
| | - Lixia Li
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region and Research Center of Cardiovascular Disease, Guangxi Academy of Medical Sciences, Nanning, China
| | - Yusheng Long
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region and Research Center of Cardiovascular Disease, Guangxi Academy of Medical Sciences, Nanning, China
| | - Ying Shi
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region and Research Center of Cardiovascular Disease, Guangxi Academy of Medical Sciences, Nanning, China
| | - Zhengde Lu
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region and Research Center of Cardiovascular Disease, Guangxi Academy of Medical Sciences, Nanning, China
| | - Ning Wu
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region and Research Center of Cardiovascular Disease, Guangxi Academy of Medical Sciences, Nanning, China
| | - Qingkuan Li
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region and Research Center of Cardiovascular Disease, Guangxi Academy of Medical Sciences, Nanning, China
| | - Huayuan Zeng
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region and Research Center of Cardiovascular Disease, Guangxi Academy of Medical Sciences, Nanning, China
| | - Guihua Li
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region and Research Center of Cardiovascular Disease, Guangxi Academy of Medical Sciences, Nanning, China
| | - Lingyue Qiu
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region and Research Center of Cardiovascular Disease, Guangxi Academy of Medical Sciences, Nanning, China
| | - Chun Gui
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University and Guangxi Key Laboratory Base of Precision Medicine in Cardiocerebrovascular Diseases Control and Prevention and Guangxi Clinical Research Center for Cardiocerebrovascular Diseases, Nanning, China.
| | - Qingwei Ji
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region and Research Center of Cardiovascular Disease, Guangxi Academy of Medical Sciences, Nanning, China.
| |
Collapse
|
3
|
Hamed AEH, Khedr S, Ghonamy E, Mahmoud FA, Ahmed MA. Impact of folic acid supplementation on ischemia‒reperfusion-induced kidney injury in rats: folic acid prophylactic role revisited. J Physiol Sci 2024; 74:7. [PMID: 38326739 PMCID: PMC10848562 DOI: 10.1186/s12576-024-00900-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/21/2024] [Indexed: 02/09/2024]
Abstract
Folic acid (FA), with its anti-inflammatory and antioxidant properties, may offer protection against ischemia-reperfusion (IR) injury. This study investigated whether FA safeguards rat kidneys from IR by targeting high mobility group box-1 (HMGB1), a key inflammatory mediator. Fifty adult male Wistar rats were randomly allocated into four groups: control, IR, IR + FA pretreatment, and FA alone. Compared to controls, IR significantly impaired renal function and elevated levels of malondialdehyde, HMGB1, NF-κB, and caspase 3. FA pretreatment effectively reversed these detrimental changes, protecting renal function and minimizing tissue damage. The FA-alone group showed no significant differences compared to the control group, indicating no adverse effects of FA treatment. Mechanistically, FA inhibited HMGB1 expression and its downstream activation of NF-κB and caspase 3, thereby quelling inflammation and cell death. FA shields rat kidneys from IR-induced injury by suppressing HMGB1-mediated inflammation and apoptosis, suggesting a potential therapeutic avenue for IR-associated kidney damage.
Collapse
Affiliation(s)
- Aya E H Hamed
- Department of Medical Physiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Sherif Khedr
- Department of Medical Physiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Elsayed Ghonamy
- Department of Medical Physiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Faten A Mahmoud
- Department of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mona A Ahmed
- Department of Medical Physiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
4
|
Yang Y, Dai C, Chen X, Zhang B, Li X, Yang W, Wang J, Feng J. Role of uranium toxicity and uranium-induced oxidative stress in advancing kidney injury and endothelial inflammation in rats. BMC Pharmacol Toxicol 2024; 25:14. [PMID: 38308341 PMCID: PMC10837886 DOI: 10.1186/s40360-024-00734-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/18/2024] [Indexed: 02/04/2024] Open
Abstract
OBJECTIVE Uranium exposure may cause serious pathological injury to the body, which is attributed to oxidative stress and inflammation. However, the pathogenesis of uranium toxicity has not been clarified. Here, we evaluated the level of oxidative stress to determine the relationship between uranium exposure, nephrotoxic oxidative stress, and endothelial inflammation. METHODS Forty male Sprague-Dawley rats were divided into three experimental groups (U-24h, U-48h, and U-72h) and one control group. The three experimental groups were intraperitoneally injected with 2.0 mg/kg uranyl acetate, and tissue and serum samples were collected after 24, 48, and 72 h, respectively, whereas the control group was intraperitoneally injected with 1.0 ml/kg normal saline and samples were collected after 24 h. Then, we observed changes in the uranium levels and oxidative stress parameters, including the total oxidative state (TOS), total antioxidant state (TAS), and oxidative stress index (OSI) in kidney tissue and serum. We also detected the markers of kidney injury, namely urea (Ure), creatine (Cre), cystatin C (CysC), and neutrophil gelatinase-associated lipocalin (NGAL). The endothelial inflammatory markers, namely C-reactive protein (CRP), lipoprotein phospholipase A2 (Lp-PLA2), and homocysteine (Hcy), were also quantified. Finally, we analyzed the relationship among these parameters. RESULTS TOS (z = 3.949; P < 0.001), OSI (z = 5.576; P < 0.001), Ure (z = 3.559; P < 0.001), Cre (z = 3.476; P < 0.001), CysC (z = 4.052; P < 0.001), NGAL (z = 3.661; P < 0.001), and CRP (z = 5.286; P < 0.001) gradually increased after uranium exposure, whereas TAS (z = -3.823; P < 0.001), tissue U (z = -2.736; P = 0.001), Hcy (z = -2.794; P = 0.005), and Lp-PLA2 (z = -4.515; P < 0.001) gradually decreased. The serum U level showed a V-shape change (z = -1.655; P = 0.094). The uranium levels in the kidney tissue and serum were positively correlated with TOS (r = 0.440 and 0.424; P = 0.005 and 0.007) and OSI (r = 0.389 and 0.449; P = 0.013 and 0.004); however, serum U levels were negatively correlated with TAS (r = -0.349; P = 0.027). Partial correlation analysis revealed that NGAL was closely correlated to tissue U (rpartial = 0.455; P = 0.003), CysC was closely correlated to serum U (rpartial = 0.501; P = 0.001), and Lp-PLA2 was closely correlated to TOS (rpartial = 0.391; P = 0.014), TAS (rpartial = 0.569; P < 0.001), and OSI (rpartial = -0.494; P = 0.001). Pearson correlation analysis indicated that the Hcy levels were negatively correlated with tissue U (r = -0.344; P = 0.030) and positively correlated with TAS (r = 0.396; P = 0.011). CONCLUSION The uranium-induced oxidative injury may be mainly reflected in enhanced endothelial inflammation, and the direct chemical toxicity of uranium plays an important role in the process of kidney injury, especially in renal tubular injury. In addition, CysC may be a sensitive marker reflecting the nephrotoxicity of uranium; however, Hcy is not suitable for evaluating short-term endothelial inflammation involving oxidative stress.
Collapse
Affiliation(s)
- Yuwei Yang
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, 621000, P.R. China.
- Mianyang Central Hospital, Affiliated to School of Medicine, University of Electronic Science and Technology of China, No. 12 Changjia Lane, Jingzhong Street, Mianyang, 621000, P.R. China.
| | - Chunmei Dai
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, 621000, P.R. China
- Mianyang Central Hospital, Affiliated to School of Medicine, University of Electronic Science and Technology of China, No. 12 Changjia Lane, Jingzhong Street, Mianyang, 621000, P.R. China
| | - Xi Chen
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, 621000, P.R. China
- Mianyang Central Hospital, Affiliated to School of Medicine, University of Electronic Science and Technology of China, No. 12 Changjia Lane, Jingzhong Street, Mianyang, 621000, P.R. China
| | - Bin Zhang
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, 621000, P.R. China
- Mianyang Central Hospital, Affiliated to School of Medicine, University of Electronic Science and Technology of China, No. 12 Changjia Lane, Jingzhong Street, Mianyang, 621000, P.R. China
| | - Xiaohan Li
- Affiliated Hospital of Southwest Medical University, Luzhou, 646000, P.R. China
| | - Wenyu Yang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P.R. China
| | - Jun Wang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P.R. China
| | - Jiafu Feng
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, 621000, P.R. China.
- Mianyang Central Hospital, Affiliated to School of Medicine, University of Electronic Science and Technology of China, No. 12 Changjia Lane, Jingzhong Street, Mianyang, 621000, P.R. China.
| |
Collapse
|
5
|
Li ZR, Liu CF, Guo DQ, Wei YJ. Association between serum homocysteine and postoperative acute kidney injury in patients undergoing cardiac surgery. Biomark Med 2024; 18:51-57. [PMID: 38358344 DOI: 10.2217/bmm-2023-0611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Background: To explore the relationship between homocysteine (Hcy) and cardiac surgery-associated acute kidney injury (AKI). Methods: A total of 944 patients who underwent cardiac surgery were enrolled. The association between Hcy levels and the risk of cardiac surgery-associated AKI was evaluated. Results: A total of 135 patients were diagnosed with AKI and the prevalence of AKI was 14.30%. The AKI group had significantly higher levels of Hcy compared with the non-AKI group (16.90 vs 13.56 umol/l; p < 0.001). The incidence rates of AKI increased from 7.2% to 26.72% across increasing Hcy quartiles (p < 0.001). Compared with the first Hcy quartile group, the odds ratio of cardiac surgery-associated AKI was 4.43 (95% CI: 2.27-8.66) in the highest Hcy group. Conclusion: Elevated Hcy level is an independent risk factor for cardiac surgery-associated AKI.
Collapse
Affiliation(s)
- Zheng-Rong Li
- Department of Clinical Pharmacy, Linyi People's Hospital, Linyi City, Shandong Province, 276000, China
| | - Cun-Fei Liu
- Department of Cardiology Medical Center, Linyi People's Hospital, Linyi City, Shandong Province, 276000, China
| | - De-Qun Guo
- Department of Cardiology Medical Center, Linyi People's Hospital, Linyi City, Shandong Province, 276000, China
| | - Yan-Jin Wei
- Department of Cardiology Medical Center, Linyi People's Hospital, Linyi City, Shandong Province, 276000, China
| |
Collapse
|
6
|
Liu Y, Yuan W, Fang M, Guo H, Zhang X, Mei X, Zhang Y, Ji L, Gao Y, Wang J, Qian Z, Li M, Gao Y. Determination of HMGB1 in hepatitis B virus-related acute-on-chronic liver failure patients with acute kidney injury: Early prediction and prognostic implications. Front Pharmacol 2023; 13:1031790. [PMID: 36712653 PMCID: PMC9880762 DOI: 10.3389/fphar.2022.1031790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/13/2022] [Indexed: 01/15/2023] Open
Abstract
Background: Acute kidney injury (AKI) is a frequent complication in patients with hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF) and is associated with high rates of mortality. We aimed to estimate serum high mobility group protein 1 (HMGB1) levels in hepatitis B virus-related acute-on-chronic liver failure patients and analyze their clinical value in the development and outcomes of Acute kidney injury. Methods: A total of 251 consecutive patients with hepatitis B virus-related acute-on-chronic liver failure were enrolled in this retrospective study. Using the International Club of Ascites staging criteria of Acute kidney injury, 153 patients developed Acute kidney injury. The clinical data of patients were collected and serum levels of high mobility group protein 1 were measured by ELISA. All patients were followed up until death or for a minimum of 3 months. Early prediction and prognostic implications of high mobility group protein 1 in Hepatitis B Virus-Related Acute-on-Chronic Liver Failure Patients with Acute Kidney Injury were investigated in different cohorts, including a propensity score-matched ACLF cohort. Results: Among all individuals with hepatitis B virus-related acute-on-chronic liver failure, the incidence of Acute kidney injury was 61.0% (153/251). The patients who developed stage 2/3 Acute kidney injury showed the highest high mobility group protein 1 levels, followed by those who developed stage 1 Acute kidney injury, and those without Acute kidney injury showed the lowest high mobility group protein 1 levels. Moreover, high mobility group protein 1 levels were significantly higher in non-survivors than in survivors among hepatitis B virus-related acute-on-chronic liver failure patients with Acute kidney injury. Furthermore, analysis of the area under the receiver operating characteristic curve (AUROC) indicated that serum high mobility group protein 1 levels (pre-matching: AUC = 0.740; post-matching: AUC = 0.661) may be a potential predictive factor for Acute kidney injury development and that high mobility group protein 1 (AUC = 0.727) might be a reliable biomarker for prognosis in patients with Acute kidney injury. Conclusion: In patients with hepatitis B virus-related acute-on-chronic liver failure, Acute kidney injury is universal. Acute kidney injury and its stages negatively influence the 90-day transplant-free mortality rate. Serum high mobility group protein 1 levels can serve as a positive predictor of Acute kidney injury development, and high mobility group protein 1 might also be a prognostic biomarker for Acute kidney injury among hepatitis B virus-related acute-on-chronic liver failure patients.
Collapse
Affiliation(s)
- Yu Liu
- Laboratory of Cellular Immunity, Institute of Clinical Immunology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China,Department of Liver Intensive Care Unit, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Wei Yuan
- Department of Liver Intensive Care Unit, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Miao Fang
- Laboratory of Cellular Immunity, Institute of Clinical Immunology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongying Guo
- Department of Liver Intensive Care Unit, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xin Zhang
- Laboratory of Cellular Immunity, Institute of Clinical Immunology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xue Mei
- Department of Liver Intensive Care Unit, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yuyi Zhang
- Department of Liver Intensive Care Unit, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Longshan Ji
- Laboratory of Cellular Immunity, Institute of Clinical Immunology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yating Gao
- Laboratory of Cellular Immunity, Institute of Clinical Immunology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiefei Wang
- Department of Liver Intensive Care Unit, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zhiping Qian
- Department of Liver Intensive Care Unit, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China,*Correspondence: Zhiping Qian, ; Man Li, ; Yueqiu Gao,
| | - Man Li
- Laboratory of Cellular Immunity, Institute of Clinical Immunology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Zhiping Qian, ; Man Li, ; Yueqiu Gao,
| | - Yueqiu Gao
- Laboratory of Cellular Immunity, Institute of Clinical Immunology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China,Institute of Infectious Diseases of Integrated Traditional Chinese and Western Medicine, Shanghai, China,*Correspondence: Zhiping Qian, ; Man Li, ; Yueqiu Gao,
| |
Collapse
|