1
|
Kounatidis D, Tzivaki I, Daskalopoulou S, Daskou A, Adamou A, Rigatou A, Sdogkos E, Karampela I, Dalamaga M, Vallianou NG. Sepsis-Associated Acute Kidney Injury: What's New Regarding Its Diagnostics and Therapeutics? Diagnostics (Basel) 2024; 14:2845. [PMID: 39767206 PMCID: PMC11674886 DOI: 10.3390/diagnostics14242845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/14/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025] Open
Abstract
Sepsis-associated acute kidney injury (SA-AKI) is defined as the development of AKI in the context of a potentially life-threatening organ dysfunction attributed to an abnormal immune response to infection. SA-AKI has been associated with increased mortality when compared to sepsis or AKI alone. Therefore, its early recognition is of the utmost importance in terms of its morbidity and mortality rates. The aim of this review is to shed light on the pathophysiological pathways implicated in SA-AKI as well as its diagnostics and therapeutics. In this review, we will elucidate upon serum and urinary biomarkers, such as creatinine, cystatin, neutrophil gelatinase-associated lipocalin (NGAL), proenkephalin A 119-159, interleukin-6, interleukin-8 and interleukin-18, soluble toll-like receptor 2 (sTLR2), chemokine ligand 2 (CCL2) and chemokine C-C-motif 14 (CCL14). In addition, the role of RNA omics as well as machine learning programs for the timely diagnosis of SA-AKI will be further discussed. Moreover, regarding SA-AKI treatment, we will elaborate upon potential therapeutic agents that are being studied, based on the pathophysiology of SA-AKI, in humans and in animal models.
Collapse
Affiliation(s)
- Dimitris Kounatidis
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Ilektra Tzivaki
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece; (I.T.); (A.D.); (A.A.); (A.R.)
| | | | - Anna Daskou
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece; (I.T.); (A.D.); (A.A.); (A.R.)
| | - Andreas Adamou
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece; (I.T.); (A.D.); (A.A.); (A.R.)
| | - Anastasia Rigatou
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece; (I.T.); (A.D.); (A.A.); (A.R.)
| | - Evangelos Sdogkos
- Department of Cardiology, Veria General Hospital, 59132 Veria, Greece;
| | - Irene Karampela
- Second Department of Critical Care, Attikon General University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Natalia G. Vallianou
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece; (I.T.); (A.D.); (A.A.); (A.R.)
| |
Collapse
|
2
|
Zhu D, Wu X. Resveratrol Inhibits circ_0074371-related Pathway to Alleviate Sepsis-induced Acute Kidney Injury. Biochem Genet 2024; 62:1779-1794. [PMID: 37730967 DOI: 10.1007/s10528-023-10517-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023]
Abstract
Resveratrol has a protective effect on sepsis-induced acute kidney injury (AKI). Circ_0074371 has been confirmed to inhibit sepsis-induced AKI process, but whether resveratrol inhibits sepsis-induced AKI by regulating circ_0074371-related pathway remains unclear. In this study, lipopolysaccharide (LPS)-induced renal tubular epithelial cells (HK2) were used to mimic AKI cell models. Quantitative real-time PCR was used to detect relative expression of circ_0074371, microRNA (miR)-145-5p and inositol polyphosphate multikinase (IPMK). Cell proliferation and apoptosis were detected by cell counting kit 8 assay, EdU assay and flow cytometry. The levels of inflammation factors were measured by ELISA assay, and MDA level and SOD activity were examined to assess oxidative stress. Protein expression of IPMK was evaluated by western bolt analysis. The relationship between miR-145-5p and circ_0074371 or IPMK was confirmed by dual-luciferase reporter assay. It was showed that circ_0074371 was upregulated in AKI patients and LPS-induced HK2 cells, and silencing of circ_0074371 promoted proliferation and inhibited apoptosis, inflammation and oxidative stress in LPS-induced HK2 cells. In terms of mechanism, circ_0074371 sponged miR-145-5p to positively regulate IPMK. IPMK overexpression could reverse the relieving effect of circ_0074371 knockdown on LPS-induced HK2 cell injury. Moreover, resveratrol suppressed LPS-induced apoptosis, inflammation and oxidative stress in HK2 cells, and circ_0074371 overexpression also reversed the protective effect of resveratrol against LPS-induced cell injury. Our data suggested that resveratrol alleviated LPS-induced HK2 cell injury by inactivating the circ_0074371/miR-145-5p/IPMK axis.
Collapse
Affiliation(s)
- Dongju Zhu
- Department of Nephrology, Affiliated Hospital of Panzhihua University, No. Taoyuan street, Bingcaogang in East region, Panzhihua, Sichuan, 617000, China.
| | - Xiang Wu
- Department of Pediatrics, Panzhihua Central Hospital, Panzhihua, Sichuan, China
| |
Collapse
|
3
|
Li Z, Xing J. Potential therapeutic applications of circular RNA in acute kidney injury. Biomed Pharmacother 2024; 174:116502. [PMID: 38569273 DOI: 10.1016/j.biopha.2024.116502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/12/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024] Open
Abstract
Acute kidney injury (AKI) is a common clinical syndrome characterized by a rapid deterioration in renal function, manifested by a significant increase in creatinine and a sharp decrease in urine output. The incidence of morbidity and mortality associated with AKI is on the rise, with most patients progressing to chronic kidney disease or end-stage renal disease. Treatment options for patients with AKI remain limited. Circular RNA (circRNA) is a wide and diverse class of non-coding RNAs that are present in a variety of organisms and are involved in gene expression regulation. Studies have shown that circRNA acts as a competing RNA, is involved in disease occurrence and development, and has potential as a disease diagnostic and prognostic marker. CircRNA is involved in the regulation of important biological processes, including apoptosis, oxidative stress, and inflammation. This study reviews the current status and progress of circRNA research in the context of AKI.
Collapse
Affiliation(s)
- Zheng Li
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Jihong Xing
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
4
|
Jin J, Yang YR, Gong Q, Wang JN, Ni WJ, Wen JG, Meng XM. Role of epigenetically regulated inflammation in renal diseases. Semin Cell Dev Biol 2024; 154:295-304. [PMID: 36328897 DOI: 10.1016/j.semcdb.2022.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/01/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
Abstract
In recent decades, renal disease research has witnessed remarkable advances. Experimental evidence in this field has highlighted the role of inflammation in kidney disease. Epigenetic dynamics and immunometabolic reprogramming underlie the alterations in cellular responses to intrinsic and extrinsic stimuli; these factors determine cell identity and cell fate decisions and represent current research hotspots. This review focuses on recent findings and emerging concepts in epigenetics and inflammatory regulation and their effect on renal diseases. This review aims to summarize the role and mechanisms of different epigenetic modifications in renal inflammation and injury and provide new avenues for future research on inflammation-related renal disease and drug development.
Collapse
Affiliation(s)
- Juan Jin
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei 230032, China; School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Ya-Ru Yang
- Department of Clinical Pharmacology, Second Hospital of Anhui Medical University, Hefei, China
| | - Qian Gong
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Jia-Nan Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei 230032, China
| | - Wei-Jian Ni
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei 230032, China
| | - Jia-Gen Wen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei 230032, China.
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei 230032, China.
| |
Collapse
|
5
|
Wang W, Shen Q, Zhou X. The predictive value of [TIMP-2]*[IGFBP7] in adverse outcomes for acute kidney injury: a systematic review and meta-analysis. Ren Fail 2023; 45:2253933. [PMID: 37724518 PMCID: PMC10512823 DOI: 10.1080/0886022x.2023.2253933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/27/2023] [Indexed: 09/21/2023] Open
Abstract
MATERIALS AND METHODS Relevant articles published up to 17 June 2023 were retrieved from five databases (Cochrane Library/Embase/PubMed/SinoMed/Web of Science). The pre-established inclusion and exclusion criteria determined the selection of publications. Pooled sensitivity (SEN), specificity (SPE), diagnostic odds ratio, likelihood ratio, and summary receiver operating characteristic curve were employed to assess the predictive value. The presence or potential sources of heterogeneity were investigated via subgroup and SEN analyses. RESULTS Ten published and eligible studies (1559 cases) were included in the evaluation for the capability of [TIMP-2]*[IGFBP7] to predict the poor prognosis of AKI through the random effect model. Pooled SEN, SPE, diagnostic odds ratio, and positive and negative likelihood ratios were 0.82 (95% CI: 0.77-0.86, I2 = 53.4%), 0.64 (95% CI: 0.61-0.67, I2 = 88.3%), 14.06 (95% CI: 7.31-27.05, I2 = 55.0%), 2.859 (95% CI: 2.15-3.77, I2 = 80.7%), and 0.28 (95% CI: 0.20-0.40, I2 = 35.0%), respectively. The estimated area under the curve was 0.8864 (standard error: 0.0306), and the Q* was 0.7970 (standard error: 0.0299). The endpoints and cutoff values were the main causes of heterogeneity. CONCLUSIONS [TIMP-2]*[IGFBP7] is possible in predicting poor prognosis of AKI, but it is better to be applied along with other indicators or clinical risk factors.
Collapse
Affiliation(s)
- Wenlei Wang
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qing Shen
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xinrui Zhou
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Yue L, Gu Y, Xu J, Liu T. Roles of noncoding RNAs in septic acute kidney injury. Biomed Pharmacother 2023; 165:115269. [PMID: 37541179 DOI: 10.1016/j.biopha.2023.115269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023] Open
Abstract
Septic acute kidney injury (SAKI) is one of the most common and life-threatening complications of sepsis. Patients with SAKI have increased mortality. However, the underlying pathogenesis is unclear, and the treatment targeting SAKI is unsatisfactory. Thus, identifying optimal biomarkers for SAKI diagnosis and treatment is an urgent requisite. Accumulating evidence indicates that noncoding RNAs (ncRNAs) are involved in the occurrence and progression of SAKI. In the present review, we summarized the studies of ncRNAs in SAKI, including microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs). The ncRNAs are divided into protective and damage factors according to their role in SAKI, and their expression patterns, functions, and molecular mechanisms were elaborated. Next, we proposed that ncRNAs have the potential to be diagnostic and prognostic biomarkers for SAKI and as new therapeutic targets. This review aimed to provide a comprehensive overview of ncRNAs in SKAI and explored the clinical value of ncRNAs as ideal biomarkers of SAKI.
Collapse
Affiliation(s)
- Lili Yue
- Division of Nephrology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Yulu Gu
- Division of Nephrology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Juntian Xu
- Division of Nephrology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Tongqiang Liu
- Division of Nephrology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China.
| |
Collapse
|
7
|
Pan Q, Xu X, He W, Wang Y, Xiang Z, Jin X, Tang Q, Zhao T, Ma X. Enrichment of miR-17-5p enhances the protective effects of EPC-EXs on vascular and skeletal muscle injury in a diabetic hind limb ischemia model. Biol Res 2023; 56:16. [PMID: 37005678 PMCID: PMC10067242 DOI: 10.1186/s40659-023-00418-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 02/07/2023] [Indexed: 04/04/2023] Open
Abstract
BACKGROUND/AIMS Diabetes mellitus (DM) is highly susceptible to diabetic hind limb ischemia (DHI). MicroRNA (MiR)-17-5p is downregulated in DM and plays a key role in vascular protection. Endothelial progenitor cell (EPC)-released exosomes (EPC-EXs) contribute to vascular protection and ischemic tissue repair by transferring their contained miRs to target cells. Here, we investigated whether miR-17-5p-enriched EPC-EXs (EPC-EXsmiR-17-5p) had conspicuous effects on protecting vascular and skeletal muscle in DHI in vitro and in vivo. METHODS EPCs transfected with scrambled control or miR-17-5p mimics were used to generate EPC-EXs and EPC-EXsmiR-17-5p. Db/db mice were subjected to hind limb ischemia. After the surgery, EPC-EXs and EPC-EXsmiR-17-5p were injected into the gastrocnemius muscle of the hind limb once every 7 days for 3 weeks. Blood flow, microvessel density, capillary angiogenesis, gastrocnemius muscle weight, structure integrity, and apoptosis in the hind limb were assessed. Vascular endothelial cells (ECs) and myoblast cells (C2C12 cells) were subjected to hypoxia plus high glucose (HG) and cocultured with EPC-EXs and EPC-EXsmiR-17-5p. A bioinformatics assay was used to analyze the potential target gene of miR-17-5p, the levels of SPRED1, PI3K, phosphorylated Akt, cleaved caspase-9 and cleaved caspase-3 were measured, and a PI3K inhibitor (LY294002) was used for pathway analysis. RESULTS In the DHI mouse model, miR-17-5p was markedly decreased in hind limb vessels and muscle tissues, and infusion of EPC-EXsmiR-17-5p was more effective than EPC-EXs in increasing miR-17-5p levels, blood flow, microvessel density, and capillary angiogenesis, as well as in promoting muscle weight, force production and structural integrity while reducing apoptosis in gastrocnemius muscle. In Hypoxia plus HG-injured ECs and C2C12 cells, we found that EPC-EXsmiR-17-5p could deliver their carried miR-17-5p into target ECs and C2C12 cells and subsequently downregulate the target protein SPRED1 while increasing the levels of PI3K and phosphorylated Akt. EPC-EXsmiR-17-5p were more effective than EPC-EXs in decreasing apoptosis and necrosis while increasing viability, migration, and tube formation in Hypoxia plus HG-injured ECs and in decreasing apoptosis while increasing viability and myotube formation in C2C12 cells. These effects of EPC-EXsmiR-17-5p could be abolished by a PI3K inhibitor (LY294002). CONCLUSION Our results suggest that miR-17-5p promotes the beneficial effects of EPC-EXs on DHI by protecting vascular ECs and muscle cell functions.
Collapse
Affiliation(s)
- Qunwen Pan
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Xiaobing Xu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Wen He
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Yan Wang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China
| | - Zhi Xiang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Xiaojuan Jin
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Qiong Tang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Ting Zhao
- Out-Patient Department, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| | - Xiaotang Ma
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| |
Collapse
|