1
|
Massari S, Giannico F, Paolillo NV, Pala A, Jambrenghi AC, Antonacci R. Genomic and comparative analysis of the T cell receptor gamma locus in two Equus species. Front Immunol 2023; 14:1264949. [PMID: 37781375 PMCID: PMC10540303 DOI: 10.3389/fimmu.2023.1264949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023] Open
Abstract
The genus Equus is the only extant genus of the Equidae family, which belongs to Perissodactyla, an order of mammals characterized by an odd number of toes (odd-toes ungulates). Taking advantage of the latest release of the genome assembly, we studied, for the first time in two organisms belonging to the Equus genus, the horse (Equus caballus) and the donkey (Equus asinus), the T cell receptor gamma (TRG) locus encoding the gamma chain of the γδ T cell receptor. Forty-five Variable (TRGV) genes belonging to the seven IMGT-NC validated mammalian TRGV subgroups, 25 Joining (TRGJ) and 17 Constant (TRGC) genes organized in 17 V-J-(J)-C cassettes, in tandem on about 1100 Kb, characterize the horse TRG locus, making the horse TRG locus the one with the greatest extension and with a significantly higher number of genes than the orthologous loci of the other mammalian species. A clonotype analysis of an RNA-seq transcriptomic dataset derived from spleen of an adult healthy horse, using the complete set of the horse TRGJ germline gene sequences as a probe, revealed that, in addition to the most prominent V-J rearrangements within each cassette, there is a relevant proportion of trans-cassette V-J recombination, whereby the same TRGV genes can recombine with different TRGJ genes spliced to the corresponding TRGC genes. This recombinant event strongly contributes to the diversity of the γ chain repertoire. In the donkey TRG locus, 34 TRGV, 21 TRGJ and 14 TRGC genes distributed in 14 V-J-(J)-C cassettes were found in a region of approximately 860 kb. Although the donkey's TRG is smaller than that of the horse, in Equus genus, this is still the second largest locus so far found in any mammalian species. Finally, the comparative analysis highlighted differences in size and gene content between the horse and donkey TRG loci, despite belonging to the same genus, indicating a good level of diversification within Equus. These data is in agreement with the evolutionary idea of the existence of a Equus recent common ancestor in rapid evolution, for which a mutation rate between horses and donkeys is more comparable to that between species belonging to different genera rather than to species of the same genus.
Collapse
Affiliation(s)
- Serafina Massari
- Department of Biological and Environmental Science and Technologies, University of Salento, Lecce, Italy
| | - Francesco Giannico
- Department of Veterinary Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Nunzia Valentina Paolillo
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", Bari, Italy
| | - Angela Pala
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", Bari, Italy
| | | | - Rachele Antonacci
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
2
|
Molecular Cytogenetics in Domestic Bovids: A Review. Animals (Basel) 2023; 13:ani13050944. [PMID: 36899801 PMCID: PMC10000107 DOI: 10.3390/ani13050944] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
The discovery of the Robertsonian translocation (rob) involving cattle chromosomes 1 and 29 and the demonstration of its deleterious effects on fertility focused the interest of many scientific groups on using chromosome banding techniques to reveal chromosome abnormalities and verify their effects on fertility in domestic animals. At the same time, comparative banding studies among various species of domestic or wild animals were found useful for delineating chromosome evolution among species. The advent of molecular cytogenetics, particularly the use of fluorescence in situ hybridization (FISH), has allowed a deeper investigation of the chromosomes of domestic animals through: (a) the physical mapping of specific DNA sequences on chromosome regions; (b) the use of specific chromosome markers for the identification of the chromosomes or chromosome regions involved in chromosome abnormalities, especially when poor banding patterns are produced; (c) better anchoring of radiation hybrid and genetic maps to specific chromosome regions; (d) better comparisons of related and unrelated species by comparative FISH mapping and/or Zoo-FISH techniques; (e) the study of meiotic segregation, especially by sperm-FISH, in some chromosome abnormalities; (f) better demonstration of conserved or lost DNA sequences in chromosome abnormalities; (g) the use of informatic and genomic reconstructions, in addition to CGH arrays, to predict conserved or lost chromosome regions in related species; and (h) the study of some chromosome abnormalities and genomic stability using PCR applications. This review summarizes the most important applications of molecular cytogenetics in domestic bovids, with an emphasis on FISH mapping applications.
Collapse
|
3
|
Zhou H, Ma L, Liu L, Yao X. TR Locus Annotation and Characteristics of Rhinolophus ferrumequinum. Front Immunol 2021; 12:741408. [PMID: 34659234 PMCID: PMC8514952 DOI: 10.3389/fimmu.2021.741408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/31/2021] [Indexed: 11/13/2022] Open
Abstract
T-cell antigen receptors (TRs) in vertebrates can be divided into αβ or γδ, encoded by TRA/D, TRG, or TRB loci. TRs play a central role in mammal cellular immunity, which occurs by rearrangement of V, D, J, and C genes in the loci. The bat is the only mammal with flying ability and is considered the main host of zoonotic viruses, an important public health concern. However, at present, little is known about the composition of bat TR genes. Based on the whole genome sequence of the greater horseshoe bat (Rhinolophus ferrumequinum) and referring to the TR/IG annotation rules formulated by the international ImMunoGeneTics information system (IMGT), we present a complete annotation of TRA/D, TRG, and TRB loci of R. ferrumequinum. A total of 128 V segments, three D segments, 85 J segments, and 6 C segments were annotated and compared with other known mammalian data. The characteristics of the TR locus and germline genes of R. ferrumequinum are analyzed.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Long Ma
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Longyu Liu
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Xinsheng Yao
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
4
|
Ott JA, Ohta Y, Flajnik MF, Criscitiello MF. Lost structural and functional inter-relationships between Ig and TCR loci in mammals revealed in sharks. Immunogenetics 2021; 73:17-33. [PMID: 33449123 PMCID: PMC7909615 DOI: 10.1007/s00251-020-01183-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/26/2020] [Indexed: 12/19/2022]
Abstract
Immunoglobulins and T cell receptors (TCR) have obvious structural similarities as well as similar immunogenetic diversification and selection mechanisms. Nevertheless, the two receptor systems and the loci that encode them are distinct in humans and classical murine models, and the gene segments comprising each repertoire are mutually exclusive. Additionally, while both B and T cells employ recombination-activating genes (RAG) for primary diversification, immunoglobulins are afforded a supplementary set of activation-induced cytidine deaminase (AID)-mediated diversification tools. As the oldest-emerging vertebrates sharing the same adaptive B and T cell receptor systems as humans, extant cartilaginous fishes allow a potential view of the ancestral immune system. In this review, we discuss breakthroughs we have made in studies of nurse shark (Ginglymostoma cirratum) T cell receptors demonstrating substantial integration of loci and diversification mechanisms in primordial B and T cell repertoires. We survey these findings in this shark model where they were first described, while noting corroborating examples in other vertebrate groups. We also consider other examples where the gnathostome common ancestry of the B and T cell receptor systems have allowed dovetailing of genomic elements and AID-based diversification approaches for the TCR. The cartilaginous fish seem to have retained this T/B cell plasticity to a greater extent than more derived vertebrate groups, but representatives in all vertebrate taxa except bony fish and placental mammals show such plasticity.
Collapse
Affiliation(s)
- Jeannine A Ott
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Yuko Ohta
- Department of Microbiology and Immunology, University of Maryland Baltimore School of Medicine, Baltimore, MD, 21201, USA
| | - Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland Baltimore School of Medicine, Baltimore, MD, 21201, USA
| | - Michael F Criscitiello
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA.
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
5
|
Gillespie A, Yirsaw A, Gunasekaran KP, Smith TP, Bickhart DM, Turley M, Connelley T, Telfer JC, Baldwin CL. Characterization of the domestic goat γδ T cell receptor gene loci and gene usage. Immunogenetics 2021; 73:187-201. [PMID: 33479855 DOI: 10.1007/s00251-021-01203-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/02/2021] [Indexed: 11/28/2022]
Abstract
Goats and cattle diverged 30 million years ago but retain similarities in immune system genes. Here, the caprine T cell receptor (TCR) gene loci and transcription of its genes were examined and compared to cattle. We annotated the TCR loci using an improved genome assembly (ARS1) of a highly homozygous San Clemente goat. This assembly has already proven useful for describing other immune system genes including antibody and leucocyte receptors. Both the TCRγ (TRG) and TCRδ (TRD) loci were similarly organized in goats as in cattle and the gene sequences were highly conserved. However, the number of genes varied slightly as a result of duplications and differences occurred in mutations resulting in pseudogenes. WC1+ γδ T cells in cattle have been shown to use TCRγ genes from only one of the six available cassettes. The structure of that Cγ gene product is unique and may be necessary to interact with WC1 for signal transduction following antigen ligation. Using RT-PCR and PacBio sequencing, we observed the same restriction for goat WC1+ γδ T cells. In contrast, caprine WC1+ and WC1- γδ T cell populations had a diverse TCRδ gene usage although the propensity for particular gene usage differed between the two cell populations. Noncanonical recombination signal sequences (RSS) largely correlated with restricted expression of TCRγ and δ genes. Finally, caprine γδ T cells were found to incorporate multiple TRD diversity gene sequences in a single transcript, an unusual feature among mammals but also previously observed in cattle.
Collapse
Affiliation(s)
- Alexandria Gillespie
- Integrated Sciences Building, Department of Veterinary and Animal Sciences, University of Massachusetts, 661 N. Pleasant St, Amherst, MA, 01003, USA
| | - Al Yirsaw
- Integrated Sciences Building, Department of Veterinary and Animal Sciences, University of Massachusetts, 661 N. Pleasant St, Amherst, MA, 01003, USA
| | - Karthick P Gunasekaran
- College of Information and Computer Sciences, University of Massachusetts, 140 Governors Drive, Amherst, MA, 01003, USA
| | - Timothy P Smith
- United States Department of Agriculture, Agricultural Research Service, United States Meat Animal Research Center, Clay Center, NE, 68933, USA
| | - Derek M Bickhart
- United States Department of Agriculture, Agricultural Research Service, United States Dairy Forage Research Center, Madison, WI, 53706, USA
| | - Michael Turley
- Integrated Sciences Building, Department of Veterinary and Animal Sciences, University of Massachusetts, 661 N. Pleasant St, Amherst, MA, 01003, USA
| | | | - Janice C Telfer
- Integrated Sciences Building, Department of Veterinary and Animal Sciences, University of Massachusetts, 661 N. Pleasant St, Amherst, MA, 01003, USA
| | - Cynthia L Baldwin
- Integrated Sciences Building, Department of Veterinary and Animal Sciences, University of Massachusetts, 661 N. Pleasant St, Amherst, MA, 01003, USA.
| |
Collapse
|
6
|
Giannico F, Massari S, Caputi Jambrenghi A, Soriano A, Pala A, Linguiti G, Ciccarese S, Antonacci R. The expansion of the TRB and TRG genes in domestic goats (Capra hircus) is characteristic of the ruminant species. BMC Genomics 2020; 21:623. [PMID: 32912163 PMCID: PMC7488459 DOI: 10.1186/s12864-020-07022-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Goats (Capra hircus), one of the first domesticated species, are economically important for milk and meat production, and their broad geographical distribution reflects their successful adaptation to diverse environmental conditions. Despite the relevance of this species, the genetic research on the goat traits is limited compared to other domestic species. Thanks to the latest goat reference genomic sequence (ARS1), which is considered to be one of the most continuous assemblies in livestock, we deduced the genomic structure of the T cell receptor beta (TRB) and gamma (TRG) loci in this ruminant species. RESULTS Our analyses revealed that although the organization of the goat TRB locus is broadly similar to that of the other artiodactyl species, with three in-tandem D-J-C clusters located at the 3' end, a complex and extensive series of duplications have occurred in the V genes at the 5' end, leading to a marked expansion in the number of the TRBV genes. This phenomenon appears to be a feature of the ruminant lineage since similar gene expansions have also occurred in sheep and cattle. Likewise, the general organization of the goat TRG genes is typical of ruminant species studied so far, with two paralogous TRG loci, TRG1 and TRG2, located in two distinct and distant positions on the same chromosome as result of a split in the ancestral locus. Each TRG locus consists of reiterated V-J-J-C cassettes, with the goat TRG2 containing an additional cassette relative to the corresponding sheep and cattle loci. CONCLUSIONS Taken together, these findings demonstrate that strong evolutionary pressures in the ruminant lineage have selected for the development of enlarged sets of TRB and TRG genes that contribute to a diverse T cell receptor repertoire. However, differences observed among the goat, sheep and cattle TRB and TRG genes indicate that distinct evolutionary histories, with independent expansions and/or contractions, have also affected each ruminant species.
Collapse
Affiliation(s)
- Francesco Giannico
- Department of Veterinary Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Serafina Massari
- Department of Biological and Environmental Science and Technologies, University of Salento, Lecce, Italy
| | - Anna Caputi Jambrenghi
- Department of Agricultural and Environmental Science, University of Bari "Aldo Moro", Bari, Italy
| | - Adriano Soriano
- Department of Biology, University of Bari "Aldo Moro", 70124, Bari, Italy
| | - Angela Pala
- Department of Biology, University of Bari "Aldo Moro", 70124, Bari, Italy
| | - Giovanna Linguiti
- Department of Biology, University of Bari "Aldo Moro", 70124, Bari, Italy
| | | | - Rachele Antonacci
- Department of Biology, University of Bari "Aldo Moro", 70124, Bari, Italy.
| |
Collapse
|
7
|
Antonacci R, Massari S, Linguiti G, Caputi Jambrenghi A, Giannico F, Lefranc MP, Ciccarese S. Evolution of the T-Cell Receptor (TR) Loci in the Adaptive Immune Response: The Tale of the TRG Locus in Mammals. Genes (Basel) 2020; 11:E624. [PMID: 32517024 PMCID: PMC7349638 DOI: 10.3390/genes11060624] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 12/16/2022] Open
Abstract
T lymphocytes are the principal actors of vertebrates' cell-mediated immunity. Like B cells, they can recognize an unlimited number of foreign molecules through their antigen-specific heterodimer receptors (TRs), which consist of αβ or γδ chains. The diversity of the TRs is mainly due to the unique organization of the genes encoding the α, β, γ, and δ chains. For each chain, multi-gene families are arranged in a TR locus, and their expression is guaranteed by the somatic recombination process. A great plasticity of the gene organization within the TR loci exists among species. Marked structural differences affect the TR γ (TRG) locus. The recent sequencing of multiple whole genome provides an opportunity to examine the TR gene repertoire in a systematic and consistent fashion. In this review, we report the most recent findings on the genomic organization of TRG loci in mammalian species in order to show differences and similarities. The comparison revealed remarkable diversification of both the genomic organization and gene repertoire across species, but also unexpected evolutionary conservation, which highlights the important role of the T cells in the immune response.
Collapse
Affiliation(s)
- Rachele Antonacci
- Department of Biology, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.L.); (S.C.)
| | - Serafina Massari
- Department of Biological and Environmental Science and Technologies, University of Salento, 73100 Lecce, Italy;
| | - Giovanna Linguiti
- Department of Biology, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.L.); (S.C.)
| | - Anna Caputi Jambrenghi
- Department of Agricultural and Environmental Science, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.C.J.); (F.G.)
| | - Francesco Giannico
- Department of Agricultural and Environmental Science, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.C.J.); (F.G.)
| | - Marie-Paule Lefranc
- IMGT, the International ImMunoGeneTics Information System, Laboratoire d’ImmunoGénétique Moléculaire LIGM, Institut de Génétique Humaine IGH, UMR9002 CNRS, Université de Montpellier, CEDEX 5, 34396 Montpellier, France;
| | - Salvatrice Ciccarese
- Department of Biology, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.L.); (S.C.)
| |
Collapse
|
8
|
Antonacci R, Linguiti G, Burger PA, Castelli V, Pala A, Fitak R, Massari S, Ciccarese S. Comprehensive genomic analysis of the dromedary T cell receptor gamma (TRG) locus and identification of a functional TRGC5 cassette. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 106:103614. [PMID: 31962062 DOI: 10.1016/j.dci.2020.103614] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/10/2020] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
The emergent availability in public databases of more complete genome assemblies allows us to improve genomic data obtained by classical molecular cloning. The main goal of this study was to refine the genomic map of the dromedary TRG locus by integrating our previous genomic data with the analysis of recent genomic assemblies. We identified an additional TRGC cassette, defined as a V-J-C recombination unit, located at the 5' of the locus and made up of five TRGV genes followed by three TRGJ genes and one TRGC gene. Hence, the complete dromedary TRG locus spans about 105 Kb and consists of three in tandem TRGC cassettes delimited by AMPH and STARD3NL genes at the 5' and 3' end, respectively. An expression assay carried out on peripheral blood showed the functional competency for the dromedary TRGC5 cassette and confirmed the presence of the somatic hypermutation mechanism able to enlarge the repertoire diversity of the dromedary γδ T cells.
Collapse
Affiliation(s)
- R Antonacci
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy.
| | - G Linguiti
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy
| | - P A Burger
- Research Institute of Wildlife Ecology, Vetmeduni Vienna, Vienna, Austria
| | - V Castelli
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy
| | - A Pala
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy
| | - R Fitak
- Research Institute of Wildlife Ecology, Vetmeduni Vienna, Vienna, Austria; Department of Biology, Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, FL, 32816, USA
| | - S Massari
- Department of Biological and Environmental Science and Technologies, University of Salento, Lecce, Italy
| | - S Ciccarese
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
9
|
Antonacci R, Bellini M, Pala A, Mineccia M, Hassanane MS, Ciccarese S, Massari S. The occurrence of three D-J-C clusters within the dromedary TRB locus highlights a shared evolution in Tylopoda, Ruminantia and Suina. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 76:105-119. [PMID: 28577760 DOI: 10.1016/j.dci.2017.05.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/26/2017] [Accepted: 05/26/2017] [Indexed: 06/07/2023]
Abstract
The αβ T cells are important components of the adaptive immune system and can recognize a vast array of peptides presented by MHC molecules. The ability of these T cells to recognize the complex depends on the diversity of the αβ TR, which is generated by a recombination of specific Variable, Diversity and Joining genes for the β chain, and Variable and Joining genes for the α chain. In this study, we analysed the genomic structure and the gene content of the TRB locus in Camelus dromedarius, which is a species belonging to the Tylopoda suborder. The most noteworthy result is the presence of three in tandem TRBD-J-C clusters in the dromedary TRB locus, which is similar to clusters found in sheep, cattle and pigs and suggests a common duplication event occurred prior to the Tylopoda/Ruminantia/Suina divergence. Conversely, a significant contraction of the dromedary TRBV genes, which was previously found in the TRG and TRD loci, was observed with respect to the other artiodactyl species.
Collapse
Affiliation(s)
| | | | - Angela Pala
- Department of Biology, University "Aldo Moro" of Bari, Bari, Italy.
| | - Micaela Mineccia
- Department of Biology, University "Aldo Moro" of Bari, Bari, Italy.
| | | | | | - Serafina Massari
- Department of Biological and Environmental Science e Technologies, University of Salento, Lecce, Italy.
| |
Collapse
|
10
|
Linguiti G, Antonacci R, Tasco G, Grande F, Casadio R, Massari S, Castelli V, Consiglio A, Lefranc MP, Ciccarese S. Genomic and expression analyses of Tursiops truncatus T cell receptor gamma (TRG) and alpha/delta (TRA/TRD) loci reveal a similar basic public γδ repertoire in dolphin and human. BMC Genomics 2016; 17:634. [PMID: 27528257 PMCID: PMC4986337 DOI: 10.1186/s12864-016-2841-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 06/15/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The bottlenose dolphin (Tursiops truncatus) is a mammal that belongs to the Cetartiodactyla and have lived in marine ecosystems for nearly 60 millions years. Despite its popularity, our knowledge about its adaptive immunity and evolution is very limited. Furthermore, nothing is known about the genomics and evolution of dolphin antigen receptor immunity. RESULTS Here we report a evolutionary and expression study of Tursiops truncatus T cell receptor gamma (TRG) and alpha/delta (TRA/TRD) genes. We have identified in silico the TRG and TRA/TRD genes and analyzed the relevant mature transcripts in blood and in skin from four subjects. The dolphin TRG locus is the smallest and simplest of all mammalian loci as yet studied. It shows a genomic organization comprising two variable (V1 and V2), three joining (J1, J2 and J3) and a single constant (C), genes. Despite the fragmented nature of the genome assemblies, we deduced the TRA/TRD locus organization, with the recent TRDV1 subgroup genes duplications, as it is expected in artiodactyls. Expression analysis from blood of a subject allowed us to assign unambiguously eight TRAV genes to those annotated in the genomic sequence and to twelve new genes, belonging to five different subgroups. All transcripts were productive and no relevant biases towards TRAV-J rearrangements are observed. Blood and skin from four unrelated subjects expression data provide evidence for an unusual ratio of productive/unproductive transcripts which arise from the TRG V-J gene rearrangement and for a "public" gamma delta TR repertoire. The productive cDNA sequences, shared both in the same and in different individuals, include biases of the TRGV1 and TRGJ2 genes. The high frequency of TRGV1-J2/TRDV1- D1-J4 productive rearrangements in dolphins may represent an interesting oligo-clonal population comparable to that found in human with the TRGV9- JP/TRDV2-D-J T cells and in primates. CONCLUSIONS Although the features of the TRG and TRA/TRD loci organization reflect those of the so far examined artiodactyls, genomic results highlight in dolphin an unusually simple TRG locus. The cDNA analysis reveal productive TRA/TRD transcripts and unusual ratios of productive/unproductive TRG transcripts. Comparing multiple different individuals, evidence is found for a "public" gamma delta TCR repertoire thus suggesting that in dolphins as in human the gamma delta TCR repertoire is accompanied by selection for public gamma chain.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Bottle-Nosed Dolphin/genetics
- Bottle-Nosed Dolphin/metabolism
- Gene Expression Profiling
- Gene Expression Regulation
- Genetic Loci
- Humans
- Molecular Sequence Data
- Phylogeny
- Protein Structure, Secondary
- RNA/blood
- RNA/isolation & purification
- RNA/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/classification
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/classification
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Sequence Alignment
- Skin/metabolism
Collapse
Affiliation(s)
- Giovanna Linguiti
- Department of Biology, University of Bari, via E. Orabona 4, 70125 Bari, Italy
| | - Rachele Antonacci
- Department of Biology, University of Bari, via E. Orabona 4, 70125 Bari, Italy
| | - Gianluca Tasco
- Biocomputing Group, CIRI-Health Science and Technologies/Department of Biology, University of Bologna, via Selmi 3, 40126 Bologna, Italy
| | - Francesco Grande
- Zoomarine Italia SpA, via Casablanca 61, 00071 Pomezia, RM Italy
| | - Rita Casadio
- Biocomputing Group, CIRI-Health Science and Technologies/Department of Biology, University of Bologna, via Selmi 3, 40126 Bologna, Italy
| | - Serafina Massari
- Department of Biological and Environmental Science e Technologies, University of Salento, via per Monteroni, 73100 Lecce, Italy
| | - Vito Castelli
- Department of Biology, University of Bari, via E. Orabona 4, 70125 Bari, Italy
| | - Arianna Consiglio
- CNR, Institute for Biomedical Technologies of Bari, via Amendola, 70125 Bari, Italy
| | - Marie-Paule Lefranc
- IMGT®, the international ImMunoGeneTics information system®, Laboratoire d’ImmunoGénétique Moléculaire, Institut de Génétique Humaine, UPR CNRS 1142, University of Montpellier, 34396 Montpellier Cedex 5, France
| | | |
Collapse
|
11
|
Iannuzzi L. The water buffalo: evolutionary, clinical and molecular cytogenetics. ITALIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.4081/ijas.2007.s2.227] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
|
13
|
An extended river buffalo (Bubalus bubalis, 2n = 50) cytogenetic map: assignment of 68 autosomal loci by FISH-mapping and R-banding and comparison with human chromosomes. Chromosome Res 2008; 16:827-37. [DOI: 10.1007/s10577-008-1229-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 05/24/2008] [Accepted: 05/24/2008] [Indexed: 01/24/2023]
|
14
|
Vaccarelli G, Miccoli MC, Antonacci R, Pesole G, Ciccarese S. Genomic organization and recombinational unit duplication-driven evolution of ovine and bovine T cell receptor gamma loci. BMC Genomics 2008; 9:81. [PMID: 18282289 PMCID: PMC2270265 DOI: 10.1186/1471-2164-9-81] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Accepted: 02/18/2008] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND In humans and mice ("gammadelta low species") less than 5% of the peripheral blood T lymphocytes are gamma/delta T cells, whereas in chicken and artiodactyls ("gammadelta high species") gamma/delta T cells represent about half of the T cells in peripheral blood. In cattle and sheep (Bovidae) two paralogous T cell receptor gamma loci (TRG1 and TRG2) have been found. TRG1 is located on 4q3.1, within a region of homology with the human TRG locus on chromosome 7, while TRG2 localizes on 4q2.2 and appears to be unique to ruminants. The purpose of this study was the sequencing of the genomic regions encompassing both loci in a "gammadelta high" organism and the analysis of their evolutionary history. RESULTS We obtained the contiguous genomic sequences of the complete sheep TRG1 and TRG2 loci gene repertoire and we performed cattle/sheep sequence analysis comparison using data available through public databases. Dot plot similarity matrix comparing the two sheep loci with each other has shown that variable (V), joining (J) and constant (C) genes have evolved through a series of duplication events involving either entire cassettes, each containing the basic V-J-J-C recombinational unit, or single V genes. The phylogenetic behaviour of the eight enhancer-like elements found in the sheep, compared with the single copy present in the human TRG locus, and evidence from concordant insertions of repetitive elements in all analyzed TRGJ blocks allowed us to infer an evolutionary scenario which highlights the genetic "flexibility" of this region and the duplication-driven evolution of gene cassettes. The strong similarity of the human and Bovidae intergenic J-J-C regions, which display an enhancer-like element at their 3' ends, further supports their key role in duplications. CONCLUSION We propose that only duplications of entire J-J-C regions that possessed an enhancer-like element at their 3' end, and acquired at least one V segment at their 5' end, were selected and fixed as functional recombinational units.
Collapse
Affiliation(s)
- Giovanna Vaccarelli
- Department of Genetics and Microbiology, University of Bari, via Amendola 165/A, 70126 Bari, Italy.
| | | | | | | | | |
Collapse
|