1
|
Alemu SA, Belachew YD, Tefera TA. Isolation and Molecular Detection of Mannheimia haemolytica and Pasteurella multocida from Clinically Pneumonic Pasteurellosis Cases of Bonga Sheep Breed and Their Antibiotic Susceptibility Tests in Selected Areas of Southwest Ethiopian Peoples Regional State, Ethiopia. VETERINARY MEDICINE (AUCKLAND, N.Z.) 2023; 14:233-244. [PMID: 38162823 PMCID: PMC10757770 DOI: 10.2147/vmrr.s435932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Background Pneumonic pasteurellosis is a respiratory system disease of sheep caused by Mannheimia haemolytica, Pasteurella multocida, and Bibersteinia trehalosi responsible for the low productivity and economic loss resulting from death and treatment costs. This study was conducted to isolate and molecularly detect causative agents and antibiotic susceptibility tests from a nasal swab sample of the Bonga sheep breed that was suspected to have pneumonic pasteurellosis in selected areas of Southwest Ethiopian Peoples Regional State. Methods A cross-sectional study design was used along with purposive sampling of nasal swab samples from sheep that were brought to veterinary clinics during the study period. Bacterial isolation and phenotypic characterization were carried out using microbiological and biochemical tests that followed standard microbiological techniques. To molecularly confirm the isolates, PHSSA and KMT1, species-specific PCR primer genes were used. Using the disc diffusion method, molecularly confirmed isolates were subjected to an in vitro antibiotic susceptibility test. Results The 85 samples that were scrutinized had an overall isolation rate of 31.76%, whereas the isolates of Pasteurella multocida and Mannheimia haemolytica had species compositions of 40.7% and 59.25%, respectively. Overall, 12.5% of the Mannheimia haemolytica and 18.18% of the Pasteurella multocida species were verified from phenotypical isolates using the species-specific PCR primer genes PHSSA and KMT1, respectively. An in vitro antibiotic susceptibility test was carried out on all four PCR-confirmed isolates for seven commonly used antibiotics used to treat ovine pasteurellosis in the study area. It was found that both bacterial species were resistant to chloramphenicol and penicillin G. Conclusion Using phenotypic and molecular diagnostic techniques, the results of our current inquiry revealed that Pasteurella multocida and Mannheimia haemolytica are the causative agents of ovine pneumonic pasteurellosis in the study area.
Collapse
|
2
|
Hirsch C, Timsit E, Uddin MS, Guan LL, Alexander TW. Comparison of pathogenic bacteria in the upper and lower respiratory tracts of cattle either directly transported to a feedlot or co-mingled at auction markets prior to feedlot placement. Front Vet Sci 2023; 9:1026470. [PMID: 36761402 PMCID: PMC9902877 DOI: 10.3389/fvets.2022.1026470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/29/2022] [Indexed: 01/26/2023] Open
Abstract
Introduction Bacterial bronchopneumonia (BP) has been associated with purchasing cattle through auction markets. However, whether auction markets are a source of BP-associated bacterial pathogens is unknown. This study evaluated prevalence, antimicrobial susceptibility, and genetic relatedness (using pulsed-field gel electrophoresis, PFGE) of Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni isolated from cattle either transported to an auction market prior to feedlot placement (AUC), or directly to a feedlot from a farm (RANC). Methods Two groups of cattle were enrolled (N = 30 per group) from two separate farms with 15 animals from an individual farm designated as AUC or RANC. Deep nasal swab (DNS) and trans-tracheal aspirates (TTA) were collected on day 0 at weaning (T0) and on day 2 at on-arrival processing at the feedlot (T1). The DNS were also collected on day 9 (T2) and day 30 (T3) after arrival at the feedlot. Results and discussion In both TTA and DNS, prevalence of bacteria did not differ between AUC and RANC groups (P > 0.05). None of the bacteria isolated at T0 were resistant to antimicrobials and diversity of all bacteria was greatest at T0 and T1. In Group 1 cattle, 100% of P. multocida isolated at T2 and T3 were multi-drug resistant. These isolates were highly related (>90%) according to PFGE, with most being clones. Though limited in size, results for animals evaluated in this study suggested that auction markets were not a major source of resistant BP pathogens, however, horizontal transmission of a multi-resistant strain of P. multocida occurred in a feedlot. Spread of resistant P. multocida was likely due to the selective pressures imposed by feedlot antimicrobial use and encoded resistance by the bacteria.
Collapse
Affiliation(s)
| | | | - Muhammed Salah Uddin
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada,Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Trevor W. Alexander
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada,*Correspondence: Trevor W. Alexander
| |
Collapse
|
3
|
Zhang X, Yi X, Zhuang H, Deng Z, Ma C. Invited Review: Antimicrobial Use and Antimicrobial Resistance in Pathogens Associated with Diarrhea and Pneumonia in Dairy Calves. Animals (Basel) 2022; 12:ani12060771. [PMID: 35327168 PMCID: PMC8944629 DOI: 10.3390/ani12060771] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 02/04/2023] Open
Abstract
Antimicrobial use (AMU) is the major driver of antimicrobial resistance (AMR) among bacteria in dairy herds. There have been numerous studies on AMU and AMR in dairy cows; however, studies on AMU and AMR in dairy calves are limited. A comprehensive overview of the current state of knowledge of AMU and AMR among pathogens in dairy calves is important for the development of scientifically supported and applicable measures to curb antimicrobial use and the increasing risk of AMR. Therefore, we performed a systematic review of research on AMU and AMR in dairy calves. A total of 75 publications were included, of which 19 studies reported AMU data for dairy calves and 68 described AMR profiles of the four most prevalent bacteria that are associated with calf diarrhea and calf pneumonia. Large variation in AMU was found among herds across different regions. There seems to be a positive association between exposure to antimicrobials and occurrence of resistance. Most AMU was accounted for by treatment of diseases, while a small proportion of AMU was prophylactic. AMU was more common in treating calf diarrhea than in treating pneumonia, and the resistance rates in bacteria associated with diarrhea were higher than those in pathogens related to pneumonia. Organic farms used significantly fewer antimicrobials to treat calf disease; however, the antimicrobial resistance rates of bacteria associated with calf diarrhea and pneumonia on both types of farms were comparable. Feeding waste or pasteurized milk was associated with a higher risk of AMR in pathogens. Altogether, this review summarizes AMU and AMR data for dairy calves and suggests areas for future research, providing evidence for the design of antimicrobial use stewardship programs in dairy calf farming.
Collapse
|
4
|
Sogawa K, Takano S, Ishige T, Yoshitomi H, Kagawa S, Furukawa K, Takayashiki T, Kuboki S, Nomura F, Ohtsuka M. Usefulness of the MALDI-TOF MS technology with membrane filter protocol for the rapid identification of microorganisms in perioperative drainage fluids of hepatobiliary pancreatic surgery. PLoS One 2021; 16:e0246002. [PMID: 33539441 PMCID: PMC7861402 DOI: 10.1371/journal.pone.0246002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 01/12/2021] [Indexed: 12/04/2022] Open
Abstract
Surgical site infections (SSIs) are significant and frequent perioperative complications, occurring due to the contamination of the surgical site. The late detection of SSIs, especially organ/space SSIs which are the more difficult to treat, often leads to severe complications. An effective method that can identify bacteria with a high accuracy, leading to the early detection of organ/space SSIs, is needed. Ninety-eight drainage fluid samples obtained from 22 patients with hepatobiliary pancreatic disease were analyzed to identify microorganisms using matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) with a new membrane filtration protocol and rapid BACpro® pretreatment compared to sole rapid BACpro® pretreatment. The levels of detail of rapid BACpro® pretreatment with or without filtration were also evaluated for the accuracy of bacterial identification. We found that reliable scores for E. coli and E. faecalis were obtained by inoculation with 1.0 × 104 CFU/ml after preparation of the membrane filter with rapid BACpro®, indicating approximately 10-folds more sensitive compared to sole rapid BACpro® pretreatment in drainage fluid specimens. Among 60 bacterial positive colonies in drainage fluid specimens, the MALDI-TOF MS and the membrane filtration with rapid BACpro® identified 53 isolates (88.3%) with a significantly higher accuracy, compared to 25 isolates in the rapid BACpro® pretreatment group (41.7%) (p < 0.001). Among the 78 strains, 14 enteric Gram-negative bacteria (93.0%) and 55 Gram-positive cocci (87.3%) were correctly identified by the membrane filtration with rapid BACpro® with a high reliability. This novel protocol could identify bacterial species within 30 min, at $2-$3 per sample, thus leading to cost and time savings. MALDI-TOF MS with membrane filter and rapid BACpro® is a quick and reliable method for bacterial identification in drainage fluids. The shortened analysis time will enable earlier selection of suitable antibiotics for treatment of organ/space SSIs to improve patients' outcomes.
Collapse
Affiliation(s)
- Kazuyuki Sogawa
- Department of Biochemistry, School of Life and Environmental Science, Azabu University, Kanagawa, Japan
| | - Shigetsugu Takano
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takayuki Ishige
- Division of Laboratory Medicine, Chiba University Hospital, Chiba, Japan
| | - Hideyuki Yoshitomi
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shingo Kagawa
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Katsunori Furukawa
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tsukasa Takayashiki
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Satoshi Kuboki
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Fumio Nomura
- Divisions of Clinical Mass Spectrometry and Clinical Genetics, Chiba University Hospital, Chiba, Japan
| | - Masayuki Ohtsuka
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
5
|
Amat S, Alexander TW, Holman DB, Schwinghamer T, Timsit E. Intranasal Bacterial Therapeutics Reduce Colonization by the Respiratory Pathogen Mannheimia haemolytica in Dairy Calves. mSystems 2020; 5:e00629-19. [PMID: 32127421 PMCID: PMC7055656 DOI: 10.1128/msystems.00629-19] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 12/10/2019] [Indexed: 01/27/2023] Open
Abstract
Six Lactobacillus strains originating from the nasopharyngeal microbiota of cattle were previously characterized in vitro and identified as candidate bacterial therapeutics (BTs) for mitigating the bovine respiratory pathogen Mannheimia haemolytica In the present study, these BT strains were evaluated for their potential to (i) reduce nasal colonization by M. haemolytica, (ii) modulate the nasal microbiota, and (iii) stimulate an immune response in calves experimentally challenged with M. haemolytica. Twenty-four Holstein bull calves (1 to 3 weeks old) received either an intranasal BT cocktail containing 6 Lactobacillus strains (3 × 109 CFU per strain; BT + Mh group) 24 h prior to intranasal M. haemolytica challenge (3 × 108 CFU) or no BTs prior to challenge (Mh, control group). Nasal swab, blood, and transtracheal aspiration samples were collected over the course of 16 days after BT inoculation. Counts of M. haemolytica were determined by culturing, and the nasal and tracheal microbiotas were evaluated using 16S rRNA gene sequencing. Serum cytokines (interleukin-6 [IL-6], IL-8, and IL-10) were quantified by enzyme-linked immunosorbent assay (ELISA). Administration of BT reduced nasal colonization by M. haemolytica (P = 0.02), modified the composition and diversity of the nasal microbiota, and altered interbacterial relationships among the 10 most relatively abundant genera. The BT + Mh calves also had a lower relative abundance of Mannheimia in the trachea (P < 0.01) but similar cytokine levels as Mh calves. This study demonstrated that intranasal BTs developed from the bovine nasopharyngeal Lactobacillus spp. were effective in reducing nasal colonization by M. haemolytica in dairy calves.IMPORTANCE Bovine respiratory disease (BRD) is one of the significant challenges for the modern dairy industry in North America, accounting for 23 to 47% of the total mortality among pre- and postweaned dairy heifers. Mass medication with antibiotics is a common practice to control BRD in dairy cattle. However, the emergence of multidrug-resistant BRD pathogens highlights the importance of developing alternatives to antibiotics for BRD mitigation. Using a targeted approach, we recently identified 6 Lactobacillus strains originating from the bovine respiratory microbiota as candidates to be used as bacterial therapeutics (BTs) for the mitigation of the BRD pathogen Mannheimia haemolytica Here, we demonstrated that intranasal inoculation of the BT strains reduced nasal colonization by M. haemolytica in dairy calves experimentally challenged with this pathogen. This study, for the first time, shows the potential use of intranasal BTs as an alternative to mitigate BRD pathogens in cattle.
Collapse
Affiliation(s)
- Samat Amat
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Trevor W Alexander
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, Canada
| | - Devin B Holman
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada
| | - Timothy Schwinghamer
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, Canada
| | - Edouard Timsit
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Simpson Ranch Chair in Beef Cattle Health and Wellness, University of Calgary, Calgary, Alberta, Canada
- CEVA Santé Animale, Libourne, France
| |
Collapse
|
6
|
Rapid identification of respiratory bacterial pathogens from bronchoalveolar lavage fluid in cattle by MALDI-TOF MS. Sci Rep 2019; 9:18381. [PMID: 31804604 PMCID: PMC6895124 DOI: 10.1038/s41598-019-54599-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023] Open
Abstract
Respiratory tract infections are a major health problem and indication for antimicrobial use in cattle and in humans. Currently, most antimicrobial treatments are initiated without microbiological results, holding the risk of inappropriate first intention treatment. The main reason for this empirical treatment is the long turnaround time between sampling and availability of identification and susceptibility results. Therefore the objective of the present study was to develop a rapid identification procedure for pathogenic respiratory bacteria in bronchoalveolar lavage fluid (BALf) samples from cattle by MALDI-TOF MS, omitting the cultivation step on agar plates to reduce the turnaround time between sampling and identification of pathogens. The effects of two different liquid growth media and various concentrations of bacitracin were determined to allow optimal growth of Pasteurellaceae and minimise contamination. The best procedure was validated on 100 clinical BALf samples from cattle with conventional bacterial culture as reference test. A correct identification was obtained in 73% of the samples, with 59.1% sensitivity (Se) (47.2–71.0%) and 100% specificity (Sp) (100–100%) after only 6 hours of incubation. For pure and dominant culture samples, the procedure was able to correctly identify 79.2% of the pathogens, with a sensitivity (Se) of 60.5% (45.0–76.1%) and specificity (Sp) of 100% (100–100%). In mixed culture samples, containing ≥2 clinically relevant pathogens, one pathogen could be correctly identified in 57% of the samples with 57.1% Se (38.8–75.5%) and 100% Sp (100–100%). In conclusion, MALDI-TOF MS is a promising tool for rapid pathogen identification in BALf. This new technique drastically reduces turnaround time and may be a valuable decision support tool to rationalize antimicrobial use.
Collapse
|
7
|
Thomas AC, Bailey M, Lee MRF, Mead A, Morales-Aza B, Reynolds R, Vipond B, Finn A, Eisler MC. Insights into Pasteurellaceae carriage dynamics in the nasal passages of healthy beef calves. Sci Rep 2019; 9:11943. [PMID: 31420565 PMCID: PMC6697682 DOI: 10.1038/s41598-019-48007-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/16/2019] [Indexed: 12/22/2022] Open
Abstract
We investigated three bovine respiratory pathobionts in healthy cattle using qPCR optimised and validated to quantify Histophilus somni, Mannheimia haemolytica and Pasteurella multocida over a wide dynamic range. A longitudinal study was conducted to investigate the carriage and density of these bacteria in the nasal passages of healthy beef calves (N = 60) housed over winter in an experimental farm setting. The three pathobiont species exhibited remarkably different carriage rates and density profiles. At housing, high carriage rates were observed for P. multocida (95%), and H. somni (75%), while fewer calves were positive for M. haemolytica (13%). Carriage rates for all three bacterial species declined over the 75-day study, but not all individuals became colonised despite sharing of environment and airspace. Colonisation patterns ranged from continuous to intermittent and were different among pathobiont species. Interval-censored exponential survival models estimated the median duration of H. somni and P. multocida carriage at 14.8 (CI95%: 10.6–20.9) and 55.5 (CI95%: 43.3–71.3) days respectively, and found higher density P. multocida carriage was associated with slower clearance (p = 0.036). This work offers insights into the dynamics of pathobiont carriage and provides a potential platform for further data collection and modelling studies.
Collapse
Affiliation(s)
- A C Thomas
- Bristol Veterinary School, University of Bristol, Langford, UK. .,Rothamsted Research, North Wyke, Devon, UK. .,Bristol Children's Vaccine Centre, University of Bristol, Bristol, UK.
| | - M Bailey
- Bristol Veterinary School, University of Bristol, Langford, UK
| | - M R F Lee
- Bristol Veterinary School, University of Bristol, Langford, UK.,Rothamsted Research, North Wyke, Devon, UK
| | - A Mead
- Rothamsted Research, Harpenden, UK
| | - B Morales-Aza
- Bristol Children's Vaccine Centre, University of Bristol, Bristol, UK.,School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - R Reynolds
- School of Population Health Sciences, University of Bristol, Bristol, UK
| | - B Vipond
- Public Health Laboratory Bristol, Public Health England, Bristol, UK
| | - A Finn
- Bristol Children's Vaccine Centre, University of Bristol, Bristol, UK.,School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK.,School of Population Health Sciences, University of Bristol, Bristol, UK
| | - M C Eisler
- Bristol Veterinary School, University of Bristol, Langford, UK.
| |
Collapse
|
8
|
Komatsu T, Inaba N, Watando E, Sugie K, Kimura K, Katsuda K, Shibahara T. Pyelonephritis caused by Mannheimia varigena in a Holstein calf. J Vet Med Sci 2019; 81:1113-1116. [PMID: 31257235 PMCID: PMC6715917 DOI: 10.1292/jvms.19-0211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
A 7-day-old calf died following development of mild respiratory symptoms. Postmortem
examination revealed the kidneys were inflamed, and Gram-negative bacteria was detected in
the kidneys, supporting the diagnosis of suppurative pyelonephritis. Mannheimia
varigena antigen was found in the lesions and the cytoplasm of macrophages and
neutrophils in the renal cortex. The Gram-negative bacilli from the kidney were identified
as M. varigena by sequencing the 16S rDNA. Although M.
varigena is known to cause bovine respiratory disease syndrome, shipping fever,
and meningitis, it was unknown that it could also cause suppurative pyelonephritis. Our
study provides the first evidence of suppurative pyelonephritis caused by M.
varigena in cattle and information that would improve our understanding,
diagnosis, and treatment for M. varigena infections.
Collapse
Affiliation(s)
- Tetsuya Komatsu
- Aichi Prefectural Chuo Livestock Hygiene Service Center, 1-306 Jizono, Miaicho, Okazaki, Aichi 444-0805, Japan
| | - Nanami Inaba
- Aichi Prefectural Chuo Livestock Hygiene Service Center, 1-306 Jizono, Miaicho, Okazaki, Aichi 444-0805, Japan
| | - Eri Watando
- Aichi Prefectural Chuo Livestock Hygiene Service Center, 1-306 Jizono, Miaicho, Okazaki, Aichi 444-0805, Japan
| | - Kennosuke Sugie
- Aichi Prefectural Chuo Livestock Hygiene Service Center, 1-306 Jizono, Miaicho, Okazaki, Aichi 444-0805, Japan
| | - Kumiko Kimura
- Division of Pathology and Pathophysiology, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Ken Katsuda
- Division of Bacterial and Parasitic Disease, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Tomoyuki Shibahara
- Division of Pathology and Pathophysiology, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan.,Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-oraikita, Izumisano, Osaka 598-8531, Japan
| |
Collapse
|
9
|
Rapid detection of tetracycline resistance in bovine Pasteurella multocida isolates by MALDI Biotyper antibiotic susceptibility test rapid assay (MBT-ASTRA). Sci Rep 2018; 8:13599. [PMID: 30206239 PMCID: PMC6134125 DOI: 10.1038/s41598-018-31562-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/21/2018] [Indexed: 12/28/2022] Open
Abstract
Pasteurella multocida is notorious for its role as an opportunistic pathogen in infectious bronchopneumonia, the economically most important disease facing cattle industry and leading indication for antimicrobial therapy. To rationalize antimicrobial use, avoiding imprudent use of highly and critically important antimicrobials for human medicine, availability of a rapid antimicrobial susceptibility test is crucial. The objective of the present study was to design a MALDI Biotyper antibiotic susceptibility test rapid assay (MBT-ASTRA) procedure for tetracycline resistance detection in P. multocida. This procedure was validated on 100 clinical isolates with MIC-gradient strip test, and a comparison with disk diffusion was made. Sensitivity and specificity of the MBT-ASTRA procedure were 95.7% (95% confidence interval (CI) = 89.8–101.5) and 100% (95% CI = 100–100), respectively, classifying 98% of the isolates correctly after only three hours of incubation. Sensitivity and specificity of disk diffusion were 93.5% (95% CI = 86.3–100.6) and 96.3% (95% CI = 91.3–101.3) respectively, classifying 95% of the isolates correctly. In conclusion, this MBT-ASTRA procedure has all the potential to fulfil the need for a rapid and highly accurate tetracycline susceptibility testing in P. multocida to rationalize antimicrobial use in outbreaks of bronchopneumonia in cattle or other clinical presentations across species.
Collapse
|
10
|
Prevalence and antimicrobial susceptibility of Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni isolated from the lower respiratory tract of healthy feedlot cattle and those diagnosed with bovine respiratory disease. Vet Microbiol 2017; 208:118-125. [PMID: 28888626 DOI: 10.1016/j.vetmic.2017.07.013] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 11/23/2022]
Abstract
Current information on prevalence and antimicrobial resistance (AMR) of bacterial respiratory pathogens is crucial to guide antimicrobial choice for control and treatment of bovine respiratory disease (BRD). The objectives were to describe the prevalence of three BRD-associated bacteria (Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni) in the lower airways of feedlot cattle, and to analyze AMR in these bacteria. Cattle with (n=210) and without (n=107) BRD were sampled by trans-tracheal aspiration at four feedlots (Nov. 15-Jan. 16). These cattle had received 2.5mg/kg of tulathromycin on arrival at the feedlot for BRD control and two in-feed pulses of chlortetracycline (5g/animal/day for 5days) within the first 21days on feed to prevent histophilosis. Bacteria were detected by culture and AMR was tested by microdilution. Pasteurella multocida was the most frequent bacterium isolated in cattle with BRD (54.8%), followed by M. haemolytica (30.5%) and H. somni (22.9%). Compared to those with BRD, healthy cattle were less likely to be positive for P. multocida (OR=0.27), M. haemolytica (OR=0.32), or H. somni (OR=0.25). There were high levels of resistance (>70%) against tulathromycin and oxytetracycline in M. haemolytica and P. multocida isolates and high levels of resistance against oxytetracycline (67%) and penicillin (52%) in H. somni isolates. None or few isolates were resistant to florfenicol, enrofloxacin and ceftiofur. The high prevalence of resistance against tulathromycin and oxytetracycline suggests that these antimicrobials should not be repeatedly used for both control and treatment of BRD and/or histophilosis.
Collapse
|
11
|
Maynou G, Bach A, Terré M. Feeding of waste milk to Holstein calves affects antimicrobial resistance of Escherichia coli and Pasteurella multocida isolated from fecal and nasal swabs. J Dairy Sci 2017; 100:2682-2694. [PMID: 28215892 DOI: 10.3168/jds.2016-11891] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 12/28/2016] [Indexed: 12/18/2022]
Abstract
The use of milk containing antimicrobial residues in calf feeding programs has been shown to select for resistant fecal Escherichia coli in dairy calves. However, information is scarce about the effects of feeding calves waste milk (WM) on the prevalence of multidrug-resistant bacteria. The objective of this study was to determine the antimicrobial resistance patterns of fecal E. coli and nasal Pasteurella multocida isolates from calves fed either milk replacer (MR) or WM in 8 commercial dairy farms (4 farms per feeding program). Fecal and nasal swabs were collected from 20 ± 5 dairy calves at 42 ± 3.2 d of age, and from 10 of these at approximately 1 yr of age in each study farm to isolate the targeted bacteria. Furthermore, resistance of E. coli isolates from calf-environment and from 5 calves at birth and their dams was also evaluated in each study farm. Resistances were tested against the following antimicrobial agents: amoxicillin-clavulanic acid, ceftiofur, colistin, doxycycline (DO), enrofloxacin (ENR), erythromycin, florfenicol, imipenem, and streptomycin. A greater number of fecal E. coli resistant to ENR, florfenicol, and streptomycin and more multidrug-resistant E. coli phenotypes were isolated in feces of calves fed WM than in those fed MR. However, the prevalence of fecal-resistant E. coli was also influenced by calf age, as it increased from birth to 6 wk of age for ENR and DO and decreased from 6 wk to 1 yr of age for DO regardless of the feeding program. From nasal samples, an increase in the prevalence of colistin-resistant P. multocida was observed in calves fed WM compared with those fed MR. The resistance patterns of E. coli isolates from calves and their dams tended to differ, whereas similar resistance profiles among E. coli isolates from farm environment and calves were observed. The findings of this study suggest that feeding calves WM fosters the presence of resistant bacteria in the lower gut and respiratory tracts of dairy calves.
Collapse
Affiliation(s)
- G Maynou
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries, 08140 Caldes de Montbui, Spain
| | - A Bach
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries, 08140 Caldes de Montbui, Spain; Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| | - M Terré
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries, 08140 Caldes de Montbui, Spain.
| |
Collapse
|
12
|
Marru HD, Anijajo TT, Hassen AA. A study on ovine pneumonic pasteurellosis: isolation and identification of Pasteurellae and their antibiogram susceptibility pattern in Haramaya District, Eastern Hararghe, Ethiopia. BMC Vet Res 2013; 9:239. [PMID: 24289236 PMCID: PMC4220828 DOI: 10.1186/1746-6148-9-239] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 11/25/2013] [Indexed: 11/10/2022] Open
Abstract
Background Sheep constitute the second major component of livestock in Ethiopia. However, efficient utilization of this potential resource is hampered by combination of health problems, poor management and feed shortage. Haramaya district is one of the remote settings in Ethiopia where information about the livestock disease is not well documented. Hence this study was conducted to determine the causative agents and their antimicrobial susceptibility pattern of bacterial Pasteurella isolates among pneumonic ovine in Haramaya district, Eastern Hararghe, Ethiopia. Results Out of 256 samples examined, Pasterurella was isolated in 64 (25%), of which 38 (59.4%) were from lungs and 26 (40.6%) were from nasal cavities. 87.5% of the isolates were Mannheimia haemolytica and 12.5% were Pasteurella multocida. All of the isolates from the lungs were Mannheimia haemolytica whereas 69% of the isolates from nasals cavities were Mannheimia haemolytica. Age and body temperature were significantly associated with Pasteurella isolates from clinic (P < 0.05). Despite diverse in the site of origins, the isolates exhibited uniformity in sensitivity to a majority of the antibacterial agents. The most effective drug was Cholramphenicol (100%) followed by Sulfamethoxazole (89.1%) and Tetracycline (84.4%). Both species were completely resistant to Gentamycin and Vancomycin. Conclusion Mannheimia haemolytica is the most common cause of ovine pneumonic pasteurellosis in the study area. The isolates were susceptible to limited antimicrobial agents. Therefore, the antimicrobial susceptibility test should be conducted before treatment, except for critical cases.
Collapse
Affiliation(s)
- Haimanot D Marru
- College of Health Sciences, School of Veterinary Medicine, Wollega University, P, O, Box 395, Nekemte, Ethiopia.
| | | | | |
Collapse
|
13
|
Britton AP, Zabek EN. Bronchopneumonia in two dairy calves associated with Mannheimia species cluster V infection. J Vet Diagn Invest 2012; 24:1043-6. [PMID: 22956485 DOI: 10.1177/1040638712457930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The pathological, bacteriological, and molecular findings of two 3-week-old Holstein calves with bronchopneumonia are presented. Heavy pure growth of a Mannheimia species most closely aligned with the unnamed cluster V strains on the basis of 16S ribosomal RNA sequencing was detected in the lungs of both calves in association with Bovine respiratory syncytial virus infection. While Mannheimia species closely related to cluster V strains have occasionally been reported in association with pneumonia, meningitis, and abortion in cattle, the current report provides a description of the gross and histopathological lesions produced by a cluster V strain of Mannheimia species. Lesions in the lung were found to be typical of those described for Mannheimia haemolytica with the absence of areas of coagulation necrosis rimmed by leukocytes and more pronounced intra-alveolar hemorrhage. Lesions were linked to the presence of leukotoxin A based on phenotypic hemolysis and molecular demonstration of the leukotoxin A gene.
Collapse
Affiliation(s)
- Ann P Britton
- Animal Health Centre, BC Ministry of Agriculture, Abbotsford, British Columbia, Canada.
| | | |
Collapse
|
14
|
Antimicrobial use in Belgian broiler production. Prev Vet Med 2012; 105:320-5. [DOI: 10.1016/j.prevetmed.2012.02.020] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 02/27/2012] [Accepted: 02/28/2012] [Indexed: 11/23/2022]
|
15
|
Pardon B, Catry B, Dewulf J, Persoons D, Hostens M, De Bleecker K, Deprez P. Prospective study on quantitative and qualitative antimicrobial and anti-inflammatory drug use in white veal calves. J Antimicrob Chemother 2012; 67:1027-38. [PMID: 22262796 DOI: 10.1093/jac/dkr570] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To document and quantify drug use in white veal calves, an intensive livestock production system where multidrug resistance is abundantly present. METHODS Drug consumption data were prospectively collected on 15 white veal production cohorts (n = 5853 calves) in Belgium (2007-09). Treatment incidences (TIs) based on animal defined daily dose (ADD), prescribed daily dose (PDD) and used daily dose (UDD) were calculated. Risk factors were identified by linear regression. RESULTS The average TI(ADD) of antimicrobial treatments was 416.8 ADD per 1000 animals at risk. Predominantly, oral group antimicrobial treatments were used (95.8%). Of the oral group antimicrobial treatments, 12% and 88% were used for prophylactic or metaphylactic indications, respectively. The main indication for group and individual drug use was respiratory disease. The most frequently used antimicrobials (group treatments) were oxytetracycline (23.7%), amoxicillin (18.5%), tylosin (17.2%) and colistin (15.2%). Deviations from the leaflet dosage recommendations were frequently encountered, with 43.7% of the group treatments underdosed (often oxytetracycline and tylosin to treat dysbacteriosis). In 33.3% of the oral antimicrobial group treatments a combination of two antimicrobial preparations was used. Smaller integrations used more antimicrobials in group treatments than larger ones (P < 0.05); an integration is defined as a company that combines all steps of the production chain by having its own feed plant and slaughterhouse and by placing its calves in veal herds owned by producers that fatten these calves for this integration on contract. Producers used higher dosages than prescribed by the veterinarian in cohorts with a single caretaker (P < 0.01). CONCLUSIONS The present study provided detailed information on the intensive antimicrobial use in the white veal industry. Reduction can only be achieved by reducing the number of oral group treatments.
Collapse
Affiliation(s)
- Bart Pardon
- Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | | | | | | | | | | | | |
Collapse
|
16
|
Hotchkiss EJ, Dagleish MP, Willoughby K, McKendrick IJ, Finlayson J, Zadoks RN, Newsome E, Brulisauer F, Gunn GJ, Hodgson JC. Prevalence of Pasteurella multocida and other respiratory pathogens in the nasal tract of Scottish calves. Vet Rec 2011; 167:555-60. [PMID: 21257416 DOI: 10.1136/vr.c4827] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The prevalence of Pasteurella multocida, a cause of bovine respiratory disease, was studied in a random sample of beef suckler and dairy farms throughout Scotland, by means of a cross-sectional survey. A total of 637 calves from 68 farms from six geographical regions of Scotland were sampled between February and June 2008. Deep nasal swabs were taken, and samples that were culture-positive for P multocida were confirmed by PCR. Prevalence of P multocida was 17 per cent (105 of 616 calves); 47 per cent of farms had at least one positive animal. A higher prevalence was detected in dairy calves than beef calves (P=0.04). It was found that P multocida was associated with Mycoplasma-like organisms (P=0.06) and bovine parainfluenza type 3 virus (BPI-3) (P=0.04), detected by culture and quantitative PCR of nasal swabs, respectively. Detection of P multocida was not associated with bovine respiratory syncytial virus (BRSV), bovine herpesvirus type 1 (BoHV-1) or bovine viral diarrhoea virus (BVDV). Mycoplasma-like organisms, BPI-3, BRSV, BoHV-1 and BVDV were detected in 58, 17, four, 0 and eight calves, on 25, five, two, 0 and five of the 68 farms, respectively.
Collapse
Affiliation(s)
- E J Hotchkiss
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, near Edinburgh EH26 0PZ
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
AbstractPasteurella multocidais a pathogenic Gram-negative bacterium that has been classified into three subspecies, five capsular serogroups and 16 serotypes.P. multocidaserogroup A isolates are bovine nasopharyngeal commensals, bovine pathogens and common isolates from bovine respiratory disease (BRD), both enzootic calf pneumonia of young dairy calves and shipping fever of weaned, stressed beef cattle.P. multocidaA:3 is the most common serotype isolated from BRD, and these isolates have limited heterogeneity based on outer membrane protein (OMP) profiles and ribotyping. Development ofP. multocida-induced pneumonia is associated with environmental and stress factors such as shipping, co-mingling, and overcrowding as well as concurrent or predisposing viral or bacterial infections. Lung lesions consist of an acute to subacute bronchopneumonia that may or may not have an associated pleuritis. Numerous virulence or potential virulence factors have been described for bovine respiratory isolates including adherence and colonization factors, iron-regulated and acquisition proteins, extracellular enzymes such as neuraminidase, lipopolysaccharide, polysaccharide capsule and a variety of OMPs. Immunity of cattle against respiratory pasteurellosis is poorly understood; however, high serum antibodies to OMPs appear to be important for enhancing resistance to the bacterium. Currently availableP. multocidavaccines for use in cattle are predominately traditional bacterins and a live streptomycin-dependent mutant. The field efficacy of these vaccines is not well documented in the literature.
Collapse
|
18
|
Alexander TW, Cook SR, Yanke LJ, Booker CW, Morley PS, Read RR, Gow SP, McAllister TA. A multiplex polymerase chain reaction assay for the identification of Mannheimia haemolytica, Mannheimia glucosida and Mannheimia ruminalis. Vet Microbiol 2008; 130:165-75. [PMID: 18308486 DOI: 10.1016/j.vetmic.2008.01.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 12/21/2007] [Accepted: 01/11/2008] [Indexed: 11/26/2022]
Abstract
The objective of this study was to design a multiplex PCR assay to identify Mannheimia haemolytica, Mannheimia glucosida and Mannheimia ruminalis. The multiplex PCR included primer sets HP, amplifying a DNA region from an unknown hypothetical protein, Lkt and Lkt2, amplifying different regions of the leukotoxinD gene, and 16S to amplify universal bacterial sequences of the 16S rRNA gene. Based on positive amplification, isolates were delineated as M. haemolytica (HP, Lkt, 16S), M. glucosida (HP, Lkt, Lkt2, 16S), or M. ruminalis (HP, 16S). The validity of the assay was examined against 22 reference strains within the family Pasteurellaceae and 17 field isolates (nasal) that had been collected previously from feedlot cattle and tentatively identified as M. haemolytica based on morphology and substrate utilization. Additionally, 200 feedlot cattle were screened for M. haemolytica using multiplex PCR. Forty-four isolates from 25 animals were identified as M. haemolytica. The PCR assay positively identified all M. haemolytica, as confirmed by phenotypic tests and clustering based upon cellular fatty acid methyl ester (FAME) profiles. Selected nasal isolates that exhibited evidence of haemolysis, but were M. haemolytica-negative based on PCR, were also confirmed negative by phenotypic and FAME analyses. The multiplex PCR assay required no additional phenotypic tests for confirmation of M. haemolytica, within the group of bacteria tested.
Collapse
Affiliation(s)
- Trevor W Alexander
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, AB T1J 4B1 Canada
| | | | | | | | | | | | | | | |
Collapse
|