1
|
Franco-Martínez L, Muñoz-Prieto A, Contreras-Aguilar MD, Želvytė R, Monkevičienė I, Horvatić A, Kuleš J, Mrljak V, Cerón JJ, Escribano D. Changes in saliva proteins in cows with mastitis: A proteomic approach. Res Vet Sci 2021; 140:91-99. [PMID: 34418789 DOI: 10.1016/j.rvsc.2021.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/05/2021] [Accepted: 08/06/2021] [Indexed: 11/29/2022]
Abstract
This study aimed to evaluate the possible saliva proteome changes in cows with mastitis using a Tandem Mass Tags (TMT) proteomics approach. For this purpose, the salivary proteomes from healthy cows and cows with mastitis were analysed, and their serum proteomes were also studied for comparative purposes. A total of eight saliva and serum paired samples for each group were used for the proteomic study, and eight additional samples for each group were analysed in the analytical and overlap performance studies. In saliva samples, 2192 proteins were identified, being sixty-three differentially modulated in mastitis. In serum, 1299 proteins were identified, being twenty-nine differentially modulated in mastitis. Gamma glutamyl transferase (γGT) in saliva and serum amyloid A (SAA) were validated by commercially available automated assays. In conclusion, there are changes in protein expression and metabolic pathways in saliva and serum proteomes of cows with mastitis, showing different response patterns but complementary information.
Collapse
Affiliation(s)
- L Franco-Martínez
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100, Espinardo, Murcia, Spain
| | - A Muñoz-Prieto
- Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia
| | - M D Contreras-Aguilar
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100, Espinardo, Murcia, Spain
| | - R Želvytė
- Department of Anatomy and Physiology, Research Center of Digestive Physiology and Pathology, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes str. 18, LT-47181 Kaunas, Lithuania
| | - I Monkevičienė
- Department of Anatomy and Physiology, Research Center of Digestive Physiology and Pathology, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes str. 18, LT-47181 Kaunas, Lithuania
| | - A Horvatić
- Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10 000 Zagreb, Croatia
| | - J Kuleš
- Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia
| | - V Mrljak
- Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia
| | - J J Cerón
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100, Espinardo, Murcia, Spain
| | - D Escribano
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100, Espinardo, Murcia, Spain; Department of Animal Production, Veterinary School, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100, Espinardo, Murcia, Spain.
| |
Collapse
|
2
|
Abstract
AbstractThe bovine mammary gland is a dynamic and complex organ composed of various cell types that work together for the purpose of milk synthesis and secretion. A layer of endothelial cells establishes the blood–milk barrier, which exists to facilitate the exchange of solutes and macromolecules necessary for optimal milk production. During bacterial challenge, however, endothelial cells divert some of their lactation function to protect the underlying tissue from damage by initiating inflammation. At the onset of inflammation, endothelial cells tightly regulate the movement of plasma components and leukocytes into affected tissue. Unfortunately, endothelial dysfunction as a result of exacerbated or sustained inflammation can negatively affect both barrier integrity and the health of surrounding extravascular tissue. The objective of this review is to highlight the role of endothelial cells in supporting milk production and regulating optimal inflammatory responses. The consequences of endothelial dysfunction and sustained inflammation on milk synthesis and secretion are discussed. Given the important role of endothelial cells in orchestrating the inflammatory response, a better understanding of endothelial function during mastitis may support development of targeted therapies to protect bovine mammary tissue and mammary endothelium.
Collapse
|
3
|
Murgiano L, D'Alessandro A, Zolla L, Valentini A, Pariset L. Comparison of Milk Fat Globule Membrane (MFGM) proteins in milk samples of Chianina and Holstein cattle breeds across three lactation phases through 2D IEF SDS PAGE — A preliminary study. Food Res Int 2013. [DOI: 10.1016/j.foodres.2012.10.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|