1
|
El-Sayed ME, Atwa A, Sofy AR, Helmy YA, Amer K, Seadawy MG, Bakry S. Mesenchymal stem cell transplantation in burn wound healing: uncovering the mechanisms of local regeneration and tissue repair. Histochem Cell Biol 2024; 161:165-181. [PMID: 37847258 PMCID: PMC10822811 DOI: 10.1007/s00418-023-02244-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2023] [Indexed: 10/18/2023]
Abstract
Burn injuries pose a significant healthcare burden worldwide, often leading to long-term disabilities and reduced quality of life. To explore the impacts of the transplantation of mesenchymal stem cells (MSCs) on the healing of burns and the levels of serum cytokines, 60 fully grown Sprague-Dawley rats were randomly divided into three groups (n = 20 each): group I (control), group II (burn induction), and group III (burn induction + bone marrow (BM)-MSC transplantation). Groups II and III were further divided into four subgroups (n = 5 each) based on euthanasia duration (7, 14, 21, and 28 days post transplant). The experiment concluded with an anesthesia overdose for rat death. After 7, 14, 21, and 28 days, the rats were assessed by clinical, laboratory, and histopathology investigations. The results revealed significant improvements in burn healing potentiality in the group treated with MSC. Furthermore, cytokine levels were measured, with significant increases in interleukin (IL)-6 and interferon alpha (IFN) observed, while IL-10 and transforming growth factor beta (TGF-β) decreased at 7 days and increased until 28 days post burn. Also, the group that underwent the experiment exhibited increased levels of pro-inflammatory cytokines and the anti-inflammatory cytokine IL-10 when compared to the control group. Histological assessments showed better re-epithelialization, neovascularization, and collagen deposition in the experimental group, suggesting that MSC transplantation in burn wounds may promote burn healing by modulating the immune response and promoting tissue regeneration.
Collapse
Affiliation(s)
- Mohamed E El-Sayed
- Zoology Department, Faculty of Science (Boys), Al-Azhar University, Cairo, 11884, Egypt
- Biological Prevention Department, Ministry of Defense, Cairo, 11766, Egypt
| | - Ahmed Atwa
- Zoology Department, Faculty of Science (Boys), Al-Azhar University, Cairo, 11884, Egypt.
| | - Ahmed R Sofy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Yasser A Helmy
- Department of Plastic & Reconstructive Surgery, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Khaled Amer
- Egypt Center for Research and Regenerative Medicine, ECRRM, 3A Ramses Extension St., Cairo, 11759, Egypt
| | - Mohamed G Seadawy
- Biological Prevention Department, Ministry of Defense, Cairo, 11766, Egypt
| | - Sayed Bakry
- Center for Genetic Engineering- Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| |
Collapse
|
2
|
Bezerra AF, Alves JPM, Fernandes CCL, Cavalcanti CM, Silva MRL, Conde AJH, Tetaping GM, Ferreira ACA, Melo LM, Rodrigues APR, Rondina D. Dyslipidemia induced by lipid diet in late gestation donor impact on growth kinetics and in vitro potential differentiation of umbilical cord Wharton's Jelly mesenchymal stem cells in goats. Vet Res Commun 2022; 46:1259-1270. [PMID: 36125693 DOI: 10.1007/s11259-022-09995-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/04/2022] [Indexed: 10/14/2022]
Abstract
Mesenchymal stem cells (MSC) from the umbilical cord (UC) have several attractive properties for clinical use. This study aimed to verify the impact of a lipid-rich diet during late gestation of donor goats on the growth and differentiation of MSCs from UC. From the 100th day of pregnancy to delivery, 22 goats were grouped based on their diet into the donor-lipid (DLD; n = 11) and donor-baseline (DBD; n = 11) diet groups. Diets were isonitrogenous and isoenergetic, differing in fat content (2.8% vs. 6.3% on a dry matter basis). Wharton's jelly (WJ) fragments were cultured. After primary culture, samples of WJ-MSCs were characterized by the expression of CD90, CD73, CD34, CD45, CD105, and Fas genes, mitochondrial activity using MitoTracker (MT) fluorescence probe, and growth kinetics. Population doubling time (PDT) was also determined. WJ-MSCs were differentiated into chondrocytes, adipocytes and osteocytes, and the mineralized area and adipocytes were determined. The lipid diet significantly increased triglyceride and cholesterol levels during pregnancy. The DLD group showed sub-expression of the CD90 gene, a high MT intensity, and a low proliferation rate at the end of the subculture. The mean PDT was 83.9 ± 1.3 h. Mineralized area and lipid droplet stain intensity from osteogenic and adipogenic differentiations, respectively, were greater in DLD. We conclude that in donor goats, dietary dyslipidemia during late pregnancy affects the ability of UC-derived MSCs to express their developmental potential in vitro, thus limiting their possible use for therapeutic purposes.
Collapse
Affiliation(s)
| | | | | | - Camila Muniz Cavalcanti
- School of Veterinary Medicine, Ceará State University (UECE), Fortaleza, CE, 60.714.903, Brazil
| | | | | | - Gildas Mbemya Tetaping
- School of Veterinary Medicine, Ceará State University (UECE), Fortaleza, CE, 60.714.903, Brazil
| | | | - Luciana Magalhães Melo
- School of Veterinary Medicine, Centro Universitario Fametro (UNIFAMETRO), Fortaleza, CE, 60010-470, Brazil
| | | | - Davide Rondina
- School of Veterinary Medicine, Ceará State University (UECE), Fortaleza, CE, 60.714.903, Brazil.
| |
Collapse
|
3
|
|
4
|
Impact of donor nutritional balance on the growth and development of mesenchymal stem cells from caprine umbilical cord Wharton´s jelly. Vet Res Commun 2021; 46:169-182. [PMID: 34625865 DOI: 10.1007/s11259-021-09843-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/28/2021] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cells (MSCs) from the umbilical cord (UC) have aroused considerable interest. However, little is known about the maternal effect on these cells. The aim of this study was to verify the impact of the nutritional status of donor goats on the growth and differentiation of MSCs from the UC. At parturition, 19 goats were grouped based on their low or high body mass index (low BMI, LBMI, n = 9; and high BMI, HBMI, n = 10). UCs were collected during delivery and Wharton's jelly (WJ) fragments cultured. WJ-MSCs were differentiated into osteocytes, adipocytes, chondrocytes, and the population doubling time (PDT) was determined. Samples of WJ-MSCs were also used to verify the expression of the CD90, CD73, CD34, CD45, and CD105 genes. Media used for WJ-MSC primary cultures were analyzed using near-infrared spectroscopy. The lag phase was 7.5 ± 0.6 days and the entire culture took 26.7 ± 1.3 days, with a cell proliferation rate of 8.500 cells/day. The mean PDT from subculture was 30.0 ± 0.7 h. The CD105 gene was sub-expressed in LBMI, and the spectra of the spent media from the second to fourth day of WJ-MSC primary culture were segregated into negative scores by multivariate analysis. We conclude that, in goats, the nutritional balance of the donor did not affect the in vitro growth of MSCs derived from the UC. However, the molecular profile observed in the low BMI group suggests that the use of MSCs for therapeutic purposes should be considered more carefully.
Collapse
|
5
|
Mankuzhy PD, Ramesh ST, Thirupathi Y, Mohandas PS, Chandra V, Sharma TG. The preclinical and clinical implications of fetal adnexa derived mesenchymal stromal cells in wound healing therapy. Wound Repair Regen 2021; 29:347-369. [PMID: 33721373 DOI: 10.1111/wrr.12911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/06/2020] [Accepted: 03/01/2021] [Indexed: 11/28/2022]
Abstract
Mesenchymal stromal cells (MSCs) isolated from fetal adnexa namely amniotic membrane/epithelium, amniotic fluid and umbilical cord have hogged the limelight in recent times, as a proposed alternative to MSCs from conventional sources. These cells which are identified as being in a developmentally primitive state have many advantages, the most important being the non-invasive nature of their isolation procedures, absence of ethical concerns, proliferation potential, differentiation abilities and low immunogenicity. In the present review, we are focusing on the potential preclinical and clinical applications of different cell types of fetal adnexa, in wound healing therapy. We also discuss the isolation-culture methods, cell surface marker expression, multi-lineage differentiation abilities, immune-modulatory capabilities and their homing property. Different mechanisms involved in the wound healing process and the role of stromal cells in therapeutic wound healing are highlighted. Further, we summarize the findings of the cell delivery systems in skin lesion models and paracrine functions of their secretome in the wound healing process. Overall, this holistic review outlines the research findings of fetal adnexa derived MSCs, their usefulness in wound healing therapy in human as well as in veterinary medicine.
Collapse
Affiliation(s)
- Pratheesh D Mankuzhy
- Department of Physiology, Kerala Veterinary and Animal Sciences University, Pookode, Wayanad, Kerala, India
| | - Sreekumar T Ramesh
- Department of Physiology, Kerala Veterinary and Animal Sciences University, Pookode, Wayanad, Kerala, India
| | - Yasotha Thirupathi
- Physiology & Climatology Division, ICAR-Indian Veterinary Research Institute (Deemed University), Izatnagar, Uttar Pradesh, India
| | - Ponny S Mohandas
- Consultant Gynecologist, Department of Gynecology and Obstetrics, Meditrina Hospital, Ayathil, Kollam, Kerala, India
| | - Vikash Chandra
- Physiology & Climatology Division, ICAR-Indian Veterinary Research Institute (Deemed University), Izatnagar, Uttar Pradesh, India
| | - Taru Guttula Sharma
- Physiology & Climatology Division, ICAR-Indian Veterinary Research Institute (Deemed University), Izatnagar, Uttar Pradesh, India
| |
Collapse
|
6
|
Gugjoo MB, Amarpal, Fazili MUR, Shah RA, Saleem Mir M, Sharma GT. Goat mesenchymal stem cell basic research and potential applications. Small Rumin Res 2020. [DOI: 10.1016/j.smallrumres.2019.106045] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
7
|
Joseph A, Baiju I, Bhat IA, Pandey S, Bharti M, Verma M, Pratap Singh A, Ansari MM, Chandra V, Saikumar G, Amarpal, Taru Sharma G. Mesenchymal stem cell-conditioned media: A novel alternative of stem cell therapy for quality wound healing. J Cell Physiol 2020; 235:5555-5569. [PMID: 31960454 DOI: 10.1002/jcp.29486] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/03/2020] [Indexed: 12/16/2022]
Abstract
Mesenchymal stem cells-conditioned media (MSCs-CM) contains several growth factors and cytokines, thus may be used as a better alternative to stem cell therapy, which needs to be elucidated. The present study was conducted to evaluate the therapeutic potential of caprine, canine, and guinea pig bone marrow-derived MSCs-CM in excision wound healing in a guinea pig model. MSCs were obtained from bone marrow, expanded ex vivo and characterized as per ISCT criteria. CM was collected assayed by western blot to ascertain the presence of important secretory biomolecules. Quantitative estimation by enzyme-linked immunosorbent assay was done for a vascular epidermal growth factor (VEGF) and interleukin-6 (IL-6) in caprine MSCs-CM and optimum time for collection of CM was decided as 72 hr. CM from all the species was lyophilized by freeze-drying method. Full-thickness (2 × 2 cm2 ) excision skin wounds were created in guinea pigs (six animals in each group) and respective lyophilized CM mixed with laminin gel was applied topically at weekly interval. On Day 28, histopathological examinations of healed skin were done by hemotoxylin and eosin staining. MSCs were found to secrete important growth factors and cytokines (i.e., VEGF, transforming growth factor-β1, fibroblast growth factor-2, insulin-like growth factor-1, stem cell factor, and IL-6) as demonstrated by immunohistochemistry and western blot assay. It was found that allogenic and xenogenic application of CM significantly improved quality wound healing with minimal scar formation. Thus, MSCs-CM can be used allogenically as well as xenogenically for quality wound healing.
Collapse
Affiliation(s)
- Anand Joseph
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Indu Baiju
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Irfan A Bhat
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Sriti Pandey
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Mukesh Bharti
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Megha Verma
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Anuj Pratap Singh
- Division of Veterinary Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Matin M Ansari
- ICAR-National Research Center on Camel, Jorebeer, Bikaner, Rajasthan, India
| | - Vikash Chandra
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Gutulla Saikumar
- Division of Veterinary Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Amarpal
- Division of Veterinary Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Gutulla Taru Sharma
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| |
Collapse
|
8
|
Pratheesh MD, Gade NE, Nath A, Dubey PK, Sivanarayanan TB, Madhu DN, Sreekumar TR, Amarpal, Saikumar G, Sharma GT. Evaluation of persistence and distribution of intra-dermally administered PKH26 labelled goat bone marrow derived mesenchymal stem cells in cutaneous wound healing model. Cytotechnology 2017; 69:841-849. [PMID: 28497366 DOI: 10.1007/s10616-017-0097-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 04/09/2017] [Indexed: 12/30/2022] Open
Abstract
The current study was designed to study the persistence and distribution of caprine bone marrow derived mesenchymal stem cells (cBM-MSCs) when administered intra-dermally in experimentally induced cutaneous wounds in rabbits. MSC's from goat bone marrow were isolated and their differentiation potential towards adipogenic and osteogenic lineages were assayed in vitro. The isolated cells were phenotypically analysed using flow cytometry for the expression of MSC specific matrix receptors (CD73, CD105 and Stro-1) and absence of hematopoietic lineage markers. Further, these in vitro expanded MSCs were stained with PKH26 lipophilic cell membrane red fluorescent dye and prepared for transplantation into cutaneous wounds created on rabbits. Five, 2 cm linear full thickness skin incisions were created on either side of dorsal midline of New Zealand white rabbits (n = 4). Four wounds in each animal were implanted intra-dermally with PKH26 labelled cBM-MSCs suspended in 500 µl of Phosphate Buffer Saline (PBS). Fifth wound was injected with PBS alone and treated as negative control. The skin samples were collected from respective wounds on 3, 7, 10 and 14 days after the wound creation, and cryosections of 6 µM were made from it. Fluorescent microscopy of these cryosections showed that the PKH26 labelled transplanted cells and their daughter cells demonstrated a diffuse pattern of distribution initially and were later concentrated towards the wound edges and finally appeared to be engrafted with the newly developed skin tissues. The labelled cells were found retained in the wound bed throughout the period of 14 days of experimental study with a gradual decline in their intensity of red fluorescence probably due to the dye dilution as a result of multiple cell division. The retention of transplanted MSCs within the wound bed even after the complete wound healing suggests that in addition to their paracrine actions as already been reported, they may have direct involvement in various stages of intricate wound healing process which needs to be explored further.
Collapse
Affiliation(s)
- M D Pratheesh
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India.,Kerala Veterinary and Animal Sciences University, Pookode, India
| | - Nitin E Gade
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India.,College of Veterinary and Animal Sciences, Durg, India
| | - Amar Nath
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India.,Central Drug Research Institute, Lucknow, India
| | - Pawan K Dubey
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India.,Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi, India
| | - T B Sivanarayanan
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India
| | - D N Madhu
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India
| | - T R Sreekumar
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India.,Kerala Veterinary and Animal Sciences University, Pookode, India
| | - Amarpal
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India
| | - G Saikumar
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India
| | - G Taru Sharma
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India.
| |
Collapse
|
9
|
Somal A, Bhat IA, B I, Singh AP, Panda BSK, Desingu PA, Pandey S, Bharti MK, Pal A, Saikumar G, Chandra V, Sharma GT. Impact of Cryopreservation on Caprine Fetal Adnexa Derived Stem Cells and Its Evaluation for Growth Kinetics, Phenotypic Characterization, and Wound Healing Potential in Xenogenic Rat Model. J Cell Physiol 2017; 232:2186-2200. [PMID: 27966782 DOI: 10.1002/jcp.25731] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/13/2016] [Indexed: 12/12/2022]
Abstract
This study was conducted to know the impact of cryopreservation on caprine fetal adnexa derived mesenchymal stem cells (MSCs) on the basic stem cell characteristics. Gravid caprine uteri (2-3 months) were collected from local abattoir to derive (amniotic fluid [cAF], amniotic sac [cAS], Wharton's jelly [cWJ], and cord blood [cCB]) MSCs and expanded in vitro. Cells were cryopreserved at 3rd passage (P3) using 10% DMSO. Post-thaw viability and cellular properties were assessed. Cells were expanded to determine growth kinetics, tri-lineage differentiation, localization, and molecular expression of MSCs and pluripotency markers; thereafter, these cells were transplanted in the full-thickness (2 × 2cm2 ) rat skin wound to determine their wound healing potential. The post-thaw (pt) growth kinetics study suggested that cWJ MSCs expanded more rapidly with faster population doubling time (PDT) than that of other fetal adnexa MSCs. The relative mRNA expression of surface antigens (CD73, CD90, and CD 105) and pluripotency markers (Oct4, KLF, and cMyc) was higher in cWJ MSCs in comparison to cAS, cAF, and cCB MSCs post-thaw. The percent wound contraction on 7th day was more than 50% for all the MSC-treated groups (pre and post-thaw), against 39.55% in the control group. On day 28th, 99% and more wound contraction was observed in cAF, cAF-pt, cAS-pt, cWJ, cWJ-pt, and cCB, MSCs with better scores for epithelization, neovascularization, and collagen characteristics at a non-significant level. It is concluded that these MSCs could be successfully cryopreserved without altering their stemness and wound healing properties. J. Cell. Physiol. 232: 2186-2200, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Anjali Somal
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Irfan A Bhat
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Indu B
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Anuj P Singh
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Bibhudatta S K Panda
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Perumal A Desingu
- Division of Veterinary Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Sriti Pandey
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Mukesh K Bharti
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Amar Pal
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Guttula Saikumar
- Division of Veterinary Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Vikash Chandra
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Guttula Taru Sharma
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| |
Collapse
|
10
|
Comparative study on characterization and wound healing potential of goat (Capra hircus) mesenchymal stem cells derived from fetal origin amniotic fluid and adult bone marrow. Res Vet Sci 2017; 112:81-88. [PMID: 28135618 DOI: 10.1016/j.rvsc.2016.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 12/25/2016] [Accepted: 12/30/2016] [Indexed: 01/09/2023]
Abstract
Caprine amniotic fluid (cAF) and bone marrow cells (cBM) were isolated, expanded and phenotypically characterized by mesenchymal stem cells (MSCs) specific cell surface markers. Both cell types were compared for multilineage differentiation potential by flow cytometry using specific antibodies against lineage specific markers. Furthermore, in vitro expanded cAF-MSCs showed higher expression of trophic factors viz. VEGF and TGF-β1 as compared to cBM-MSCs. Full-skin thickness excisional wounds created on either side of the dorsal midline (thoracolumbar) of New Zealand White rabbits were randomly assigned to subcutaneous injection of either fetal origin cAF-MSCs (n=4) or adult cBM-MSCs (n=4) or sterile PBS (control, n=4). The rate of wound closure was found faster (p<0.05) in cAF-MSCs treated wounds as compared with cBM-MSCs and PBS treated wounds especially on 21st day post-skin excision. Histomorphological examination of the healing tissue showed that wound healing was improved (p<0.05) by greater epithelialization, neovascularization and collagen development in cAF-MSCs as compared to cBM-MSCs and PBS treated wounds.
Collapse
|
11
|
Bhardwaj R, Ansari MM, Parmar MS, Chandra V, Sharma GT. Stem Cell Conditioned Media Contains Important Growth Factors and Improves In Vitro Buffalo Embryo Production. Anim Biotechnol 2016; 27:118-25. [PMID: 26913553 DOI: 10.1080/10495398.2015.1118383] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The present study was designed to investigate the effect of MSCs-conditioned media (CM) on quality buffalo embryo production in vitro. MSCs were harvested from Wharton's jelly of 2-3 month old fetus and MSCs CM was collected. Immunocytochemistry and western blot assay revealed that MSCs secrete several important growth factors viz. FGF-2, IGF-1, LIF, TGF-β, and VEGF. Slaughterhouse derived culture grade cumulus oocyte complexes (COCs) were matured and fertilized in vitro. Presumptive zygotes were divided in four groups and cultured in vitro in respective media viz. group I (100% mSOF), Group II (100% Knockout Media DMEM+SR), Group III (50% CM + 50% mSOF), and group IV (100% CM). It was found that though the cleavage rate did not changed significantly (p < 0.05), but blastocyst rate was increased significantly (p < 0.05) in Group III and IV (24.24 ± 1.34 and 23.29 ± 1.25, respectively) compared to group I and II (16.04 ± 1.46 and 17.72 ± 0.94, respectively). Similarly, TCN was significantly (p < 0.05) higher in 50% CM and 100% CM replacement group (93.33 ± 1.91 and 92.13 ± 1.04, respectively) than the other two groups. It can be concluded from the study that MSCs secrete several important growth factors and MSCs-CM can be effectively used for enhancement of quality buffalo embryo production in vitro.
Collapse
Affiliation(s)
- Rahul Bhardwaj
- a Reproductive Physiology Laboratory, Division of Physiology and Climatology , ICAR-Indian Veterinary Research Institute , Izatnagar , India
| | - Matin M Ansari
- a Reproductive Physiology Laboratory, Division of Physiology and Climatology , ICAR-Indian Veterinary Research Institute , Izatnagar , India
| | - Mehtab S Parmar
- a Reproductive Physiology Laboratory, Division of Physiology and Climatology , ICAR-Indian Veterinary Research Institute , Izatnagar , India
| | - Vikash Chandra
- a Reproductive Physiology Laboratory, Division of Physiology and Climatology , ICAR-Indian Veterinary Research Institute , Izatnagar , India
| | - G Taru Sharma
- a Reproductive Physiology Laboratory, Division of Physiology and Climatology , ICAR-Indian Veterinary Research Institute , Izatnagar , India
| |
Collapse
|
12
|
Isolation and characterization of mesenchymal stem cells from caprine umbilical cord tissue matrix. Tissue Cell 2016; 48:653-658. [DOI: 10.1016/j.tice.2016.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 05/25/2016] [Accepted: 06/10/2016] [Indexed: 12/18/2022]
|
13
|
Somal A, Bhat IA, B. I, Pandey S, Panda BSK, Thakur N, Sarkar M, Chandra V, Saikumar G, Sharma GT. A Comparative Study of Growth Kinetics, In Vitro Differentiation Potential and Molecular Characterization of Fetal Adnexa Derived Caprine Mesenchymal Stem Cells. PLoS One 2016; 11:e0156821. [PMID: 27257959 PMCID: PMC4892572 DOI: 10.1371/journal.pone.0156821] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/02/2016] [Indexed: 02/07/2023] Open
Abstract
The present study was conducted with an objective of isolation, in vitro expansion, growth kinetics, molecular characterization and in vitro differentiation of fetal adnexa derived caprine mesenchymal stem cells. Mid-gestation gravid caprine uteri (2–3 months) were collected from abattoir to derive mesenchymal stem cells (MSCs) from fetal adnexa {amniotic fluid (cAF), amniotic sac (cAS), Wharton’s jelly (cWJ) and cord blood (cCB)} and expanded in vitro. These cultured MSCs were used at the 3rd passage (P3) to study growth kinetics, localization as well as molecular expression of specific surface antigens, pluripotency markers and mesenchymal tri-lineage differentiation. In comparison to cAF and cAS MSCs, cWJ and cCB MSCs showed significantly (P<0.05) higher clonogenic potency, faster growth rate and low population doubling (PDT) time. All the four types of MSCs were positive for alkaline phosphatase (AP) and differentiated into chondrogenic, osteogenic, and adipogenic lineages. These stem cells expressed MSC surface antigens (CD73, CD90 and CD105) and pluripotency markers (Oct4, Sox2, Nanog, KLF, cMyc, FoxD3) but did not express CD34, a hematopoietic stem cell marker (HSC) as confirmed by RT-PCR, immunocytochemistry and flow cytometric analysis. The relative mRNA expression of MSC surface antigens (CD73, CD90 and CD105) was significantly (P<0.05) higher in cWJ MSCs compared to the other cell lines. The mRNA expression of Oct4 was significantly (P<0.05) higher in cWJ, whereas mRNA expression of KLF and cMyc was significantly (P<0.05) higher in cWJ and cAF than that of cAS and cCB. The comparative assessment revealed that cWJ MSCs outperformed MSCs from other sources of fetal adnexa in terms of growth kinetics, relative mRNA expression of surface antigens, pluripotency markers and tri-lineage differentiation potential, hence, these MSCs could be used as a preferred source for regenerative medicine.
Collapse
Affiliation(s)
- Anjali Somal
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar-243 122, Bareilly, U.P., India
| | - Irfan A. Bhat
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar-243 122, Bareilly, U.P., India
| | - Indu B.
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar-243 122, Bareilly, U.P., India
| | - Sriti Pandey
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar-243 122, Bareilly, U.P., India
| | - Bibhudatta S. K. Panda
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar-243 122, Bareilly, U.P., India
| | - Nipuna Thakur
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar-243 122, Bareilly, U.P., India
| | - Mihir Sarkar
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar-243 122, Bareilly, U.P., India
| | - Vikash Chandra
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar-243 122, Bareilly, U.P., India
| | - G. Saikumar
- Division of Veterinary Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar-243 122, Bareilly, U.P., India
| | - G. Taru Sharma
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar-243 122, Bareilly, U.P., India
- * E-mail:
| |
Collapse
|
14
|
Dias RP, Teixeira MF, Costa EC, Farias AC, Azevedo DA, Aguiar TD, Pinheiro MA. Potential for in vitro mesoderm differentiation of Wharton's jelly cells from ovine umbilical cord isolated in different culture media. PESQUISA VETERINARIA BRASILEIRA 2016. [DOI: 10.1590/s0100-736x2016001300012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract: The mammalian Wharton's jelly of umbilical cord (WJUC) is a promising source of multipotent cells, providing advantages due to ethical implications, ease of collection and the absence of teratomas in pre-clinical trials. Ovine multipotent cells have already been isolated from various tissues, however there are no reports using umbilical cords in this species. This study aimed to investigate the best medium to transport the umbilical cord, to isolate and maintain ovine WJUC cells and to compare in vitro growth and mesodermal differentiation potential. Eight ovine umbilical cords were obtained during parturition, sectioned and transported in six different media: MEM, low glucose DMEM, M199, RPMI 1640, PBS and saline. For each transportation medium, four culture media were used and the tissue was explanted in 24-well plates and cultured in MEM, low glucose DMEM, M199 and RPMI 1640, all with 10% FBS. Every experiment was conducted with low-passage (P2), investigating MTT viability during four days and adipogenic, chondrogenic and osteogenesis differentiation was induced in vitro. The most effective transport medium (p<0.1) was low glucose DMEM. There was no bacterial or fungal contamination from collection. Cells from Wharton's jelly of ovine umbilical cords collected at natural birth possess fibroblastic morphology and the capacity for in vitro differentiation into adipogenic, chondrogenic and osteogenic cell lines. MTT tests and in vitro differentiation experiments revealed that cell culture medium modulates the behavior of cells and is an important factor for proliferation and maintenance of multipotency. Low glucose DMEM was the most suitable medium for the isolation of cells from Wharton's jelly of ovine umbilical cord.
Collapse
Affiliation(s)
| | | | - Edmara C. Costa
- Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Brazil
| | | | | | | | | |
Collapse
|
15
|
Iacono E, Rossi B, Merlo B. Stem cells from foetal adnexa and fluid in domestic animals: an update on their features and clinical application. Reprod Domest Anim 2015; 50:353-64. [PMID: 25703812 DOI: 10.1111/rda.12499] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/15/2015] [Indexed: 12/25/2022]
Abstract
Over the past decade, stem cell research has emerged as an area of major interest for its potential in regenerative medicine applications. This is in constant need of new cell sources to conceive regenerative medicine approaches for diseases that are still without therapy. Scientists drew the attention towards alternative sources such as foetal adnexa and fluid, as these sources possess many advantages: first of all, cells can be extracted from discarded foetal material and it is non-invasive and inexpensive for the patient; secondly, abundant stem cells can be obtained; and finally, these stem cell sources are free from ethical considerations. Cells derived from foetal adnexa and fluid preserve some of the characteristics of the primitive embryonic layers from which they originate. Many studies have demonstrated the differentiation potential in vitro and in vivo towards mesenchymal and non-mesenchymal cell types; in addition, the immune-modulatory properties make these cells a good candidate for allo- and xenotransplantation. Naturally occurring diseases in domestic animals can be more ideal as disease model of human genetic and acquired diseases and could help to define the potential therapeutic use efficiency and safety of stem cells therapies. This review offers an update on the state of the art of characterization of domestic animals' MSCs derived from foetal adnexa and fluid and on the latest findings in pre-clinical or clinical setting of the stem cell populations isolated from these sources.
Collapse
Affiliation(s)
- E Iacono
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia (Bo), Italy
| | | | | |
Collapse
|