1
|
Fernandes B, Alves S, Schmidt V, Bizarro AF, Pinto M, Pereira H, Marto J, Lourenço AM. Primary Prevention of Canine Atopic Dermatitis: Breaking the Cycle-A Narrative Review. Vet Sci 2023; 10:659. [PMID: 37999481 PMCID: PMC10674681 DOI: 10.3390/vetsci10110659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/24/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
Canine atopic dermatitis (cAD) is a common and distressing skin condition in dogs, affecting up to 30% of the canine population. It not only impacts their quality of life but also that of their owners. Like human atopic dermatitis (hAD), cAD has a complex pathogenesis, including genetic and environmental factors. Current treatments focus on managing clinical signs, but they can be costly and have limitations. This article emphasizes the importance of preventing cAD from developing in the first place. Understanding the role of the skin's protective barrier is crucial, as its dysfunction plays a vital role in both hAD and cAD. hAD prevention studies have shown promising results in enhancing the skin barrier, but more research is needed to support more robust conclusions. While hAD primary prevention is currently a focal point of intensive investigation in human medicine, research on cAD primary prevention remains under-researched and almost non-existent. Pioneering effective prevention strategies for cAD holds immense potential to enhance the quality of life for both dogs and their owners. Additionally, it bears the promise of a translational impact on human research. Hence, further exploration of this crucial topic is not only relevant but also timely and imperative, warranting support and encouragement.
Collapse
Affiliation(s)
- Beatriz Fernandes
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1649-004 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
- Research Institute for Medicine (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1600-277 Lisbon, Portugal
| | - Susana Alves
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1649-004 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Vanessa Schmidt
- School of Veterinary Science, University of Liverpool, Liverpool L69 3GH, UK
| | - Ana Filipa Bizarro
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1649-004 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
- Research Institute for Medicine (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1600-277 Lisbon, Portugal
| | - Marta Pinto
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1649-004 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
- Research Institute for Medicine (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1600-277 Lisbon, Portugal
| | - Hugo Pereira
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1649-004 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Joana Marto
- Research Institute for Medicine (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1600-277 Lisbon, Portugal
| | - Ana Mafalda Lourenço
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1649-004 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| |
Collapse
|
2
|
Bouwstra JA, Nădăban A, Bras W, McCabe C, Bunge A, Gooris GS. The skin barrier: An extraordinary interface with an exceptional lipid organization. Prog Lipid Res 2023; 92:101252. [PMID: 37666282 PMCID: PMC10841493 DOI: 10.1016/j.plipres.2023.101252] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
The barrier function of the skin is primarily located in the stratum corneum (SC), the outermost layer of the skin. The SC is composed of dead cells with highly organized lipid lamellae in the intercellular space. As the lipid matrix forms the only continuous pathway, the lipids play an important role in the permeation of compounds through the SC. The main lipid classes are ceramides (CERs), cholesterol (CHOL) and free fatty acids (FFAs). Analysis of the SC lipid matrix is of crucial importance in understanding the skin barrier function, not only in healthy skin, but also in inflammatory skin diseases with an impaired skin barrier. In this review we provide i) a historical overview of the steps undertaken to obtain information on the lipid composition and organization in SC of healthy skin and inflammatory skin diseases, ii) information on the role CERs, CHOL and FFAs play in the lipid phase behavior of very complex lipid model systems and how this knowledge can be used to understand the deviation in lipid phase behavior in inflammatory skin diseases, iii) knowledge on the role of both, CER subclasses and chain length distribution, on lipid organization and lipid membrane permeability in complex and simple model systems with synthetic CERs, CHOL and FFAs, iv) similarity in lipid phase behavior in SC of different species and complex model systems, and vi) future directions in modulating lipid composition that is expected to improve the skin barrier in inflammatory skin diseases.
Collapse
Affiliation(s)
- Joke A Bouwstra
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
| | - Andreea Nădăban
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Wim Bras
- Chemical Sciences Division, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831, United States of America
| | - Clare McCabe
- School of Engineering & Physical Science, Heriot-Watt University, Edinburgh, Scotland, UK
| | - Annette Bunge
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, United States of America
| | - Gerrit S Gooris
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
3
|
Uchiyama J, Osumi T, Mizukami K, Fukuyama T, Shima A, Unno A, Takemura-Uchiyama I, Une Y, Murakami H, Sakaguchi M. Characterization of the oral and fecal microbiota associated with atopic dermatitis in dogs selected from a purebred Shiba Inu colony. Lett Appl Microbiol 2022; 75:1607-1616. [PMID: 36067033 DOI: 10.1111/lam.13828] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/21/2022] [Accepted: 08/31/2022] [Indexed: 11/30/2022]
Abstract
Atopic dermatitis (AD) is a chronic and relapsing multifactorial inflammatory skin disease that also affects dogs. The oral and gut microbiota are associated with many disorders, including allergy. Few studies have addressed the oral and gut microbiota in dogs, although the skin microbiota has been studied relatively well in these animals. Here, we studied the AD-associated oral and gut microbiota in 16 healthy and nine AD dogs from a purebred Shiba Inu colony. We found that the diversity of the oral microbiota was significantly different among the dogs, whereas no significant difference was observed in the gut microbiota. Moreover, a differential abundance analysis detected the Family_XIII_AD3011_group (Anaerovoracaceae) in the gut microbiota of AD dogs; however, no bacterial taxa were detected in the oral microbiota. Third, the comparison of the microbial co-occurrence patterns between AD and healthy dogs identified differential networks in which the bacteria in the oral microbiota that were most strongly associated with AD were related with human periodontitis, whereas those in the gut microbiota were related with dysbiosis and gut inflammation. These results suggest that AD can alter the oral and gut microbiota in dogs.
Collapse
Affiliation(s)
- Jumpei Uchiyama
- Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.,School of Veterinary Medicine, Azabu University, Kanagawa, Japan
| | - Takafumi Osumi
- Laboratory of Veterinary Internal Medicine, Division of Animal Life Science, Graduate School, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Keijiro Mizukami
- School of Veterinary Medicine, Azabu University, Kanagawa, Japan.,Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Tomoki Fukuyama
- School of Veterinary Medicine, Azabu University, Kanagawa, Japan
| | - Ayaka Shima
- Anicom Specialty Medical Institute Inc., Tokyo, Japan
| | - Asaka Unno
- School of Veterinary Medicine, Azabu University, Kanagawa, Japan
| | - Iyo Takemura-Uchiyama
- Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.,School of Veterinary Medicine, Azabu University, Kanagawa, Japan
| | - Yumi Une
- Faculty of Veterinary Medicine, Okayama University of Science, Ehime, Japan
| | | | - Masahiro Sakaguchi
- School of Veterinary Medicine, Azabu University, Kanagawa, Japan.,Institute of Tokyo Environmental Allergy, Tokyo, Japan
| |
Collapse
|
4
|
The Linoleic Acid Content of the Stratum Corneum of Ichthyotic Golden Retriever Dogs Is Reduced as Compared to Healthy Dogs and a Significant Part Is Oxidized in Both Free and Esterified Forms. Metabolites 2021; 11:metabo11120803. [PMID: 34940561 PMCID: PMC8704365 DOI: 10.3390/metabo11120803] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 11/23/2022] Open
Abstract
Golden Retrievers may suffer from Pnpl1-related inherited ichthyosis. Our study shows that in the stratum corneum (SC) of ichthyotic dogs, linoleic acid (LA) is also present in the form of 9-keto-octadecadienoic acid (9-KODE) instead of the acylacid form as in normal dogs. The fatty acids purified from SC strips (LA, acylacids) were characterized by liquid chromatography-tandem mass spectrometry (LC-MS) and atmospheric pressure chemical ionization (APCI). Electrospray ionization (ESI) and MS2(MS/MS Tandem mass spectrum/spectra)/M3 (MS/MS/MS Tandem mass spectrum/spectra) fragmentation indicated the positions of the double bonds in 9-KODE. We showed that ichthyotic dogs have a threefold lower LA content in the form of acylacids. The MS2 fragmentation of acyl acids showed in some peaks the presenceof an ion at the m/z 279, instead of an ion at m/z 293 which is characteristic of LA. The detected variant was identified upon MS3 fragmentation as 9-keto-octadecadienoic acid (9-KODE), and the level of this keto-derivative was increased in ichthyotic dogs. We showed by the APCI that such keto forms of LA are produced from hydroperoxy-octadecadienoic acids (HpODE) upon dehydration. In conclusion, the free form of 9-KODE was detected in ichthyotic SC up to fivefold as compared to unaffected dogs, and analyses by HPLC (High performance liquid chromatography) and ESI-MS (Electrospray Ionization-Mass Spectrometry) indicated its production via dehydration of native 9-HpODE.
Collapse
|