1
|
Zhang Z, Liu D, Hu J, Sun W, Liu K, Li J, Xu H, Liu J, He L, Jiang D, Gu M, Hu S, Wang X, Liu X, Liu X. Multiplex one-step real-time PCR assay for rapid simultaneous detection of velogenic and mesogenic Newcastle disease virus and H5-subtype avian influenza virus. Arch Virol 2019; 164:1111-1119. [PMID: 30790106 DOI: 10.1007/s00705-019-04180-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 01/18/2019] [Indexed: 02/08/2023]
Abstract
H5 avian influenza virus (AIV) and velogenic Newcastle disease virus (v-NDV) are pathogens listed in the OIE Terrestrial Animal Health Code and are considered key pathogens to be eliminated in poultry production. Molecular techniques for rapid detection of H5 AIV and v-NDV are required to investigate their transmission characteristics and to guide prevention. Traditional virus isolation, using embryonated chicken eggs, is time-consuming and cannot be used as a rapid diagnostic technology. In this study, a multiplex real-time RT-PCR (RRT-PCR) detection method for six H5 AIV clades, three v-NDV subtypes, and one mesogenic NDV subtype was successfully established. The detection limit of our multiplex NDV and H5 AIV RRT-PCR was five copies per reaction for each pathogen, with good linearity and efficiency (y = -3.194x + 38.427 for H5 AIV and y = -3.32x + 38.042 for NDV). Multiplex PCR showed good intra- and inter-assay reproducibility, with coefficient of variance (CV) less than 1%. Furthermore, using the RRT-PCR method, H5 AIV and NDV detection rates in clinical samples were higher overall than those obtained using the traditional virus isolation method. Therefore, our method provides a promising technique for surveillance of various H5 AIV clades and multiple velogenic and mesogenic NDV subtypes in live-poultry markets.
Collapse
Affiliation(s)
- Zhujun Zhang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Dong Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Wenqiang Sun
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Kaituo Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Juan Li
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Haixu Xu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Jing Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Lihong He
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Daxiu Jiang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Min Gu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China. .,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China.
| |
Collapse
|
2
|
Karamendin KO, Sayatov MK, Kydyrmanov AI, Kasymbekov ET, Asanova SE, Daulbayeva KD, Khan EY. [Molecular-genetic characterization of Avian avulavirus 20 strains isolated from wild birds.]. Vopr Virusol 2019; 64:185-192. [PMID: 32163685 DOI: 10.36233/0507-4088-2019-64-4-185-192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/31/2018] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Previously unknown paramyxovirus strains were isolated from wild birds in 2013-2014 in Kazakhstan and subsequently identified as representatives of the novel Avian avulavirus 20 species. The aims and tasks were molecular genetic characterization of novel avulaviruses and investigation of their phylogenetic relationships. MATERIAL AND METHODS Embryonated chicken eggs were inoculated with cloacal and tracheal swabs from wild birds with subsequent virus isolation. The complete nucleotide sequences of viral genomes were obtained by massive parallel sequencing with subsequent bioinformatics processing. RESULTS By initial infection of chicken embryos with samples from 179 wild birds belonging to the Anatidae, Laridae, Scolopacidae and Charadriidae families, 19 hemagglutinating agents were isolated, and five of them were identified as representatives of new viral species. The study of their sequenced genomes revealed their similarity in size, but there was a significant genetic variability within the species. 2,640 nucleotide substitutions were identified and 273 of them were nonsynonymous, influencing the protein structure of viruses. It was shown that isolates Avian avulavirus 20/black-headed gull/Balkhash/5844/2013 and Avian avulavirus 20 /great black-headed gull/Atyrau/5541/2013 were 86% and 95% respectively identical to the previously described reference strain, indicating a significant evolutionary divergence within species. DISCUSSION The authors suggest the existence of two independent lineages - the Caspian, represented by the reference strain Aktau/5976 and Atyrau/5541, as well as the second, geographically significantly distant Balkhash lineage. CONCLUSION The study confirms the role of the birds of the Laridae family as the main reservoir of Avian avulavirus 20 in the avifauna that plays a key role in maintaining viruses of the genus Avulavirus in the biosphere and is a potential natural source for the emergence of new viral variants. Continuous surveillance of them in the wild is one of the most important tasks in ensuring the safety of the poultry industry.
Collapse
Affiliation(s)
- K O Karamendin
- SPC for Microbiology and Virology, Almaty, 050010, Kazakhstan
| | - M K Sayatov
- SPC for Microbiology and Virology, Almaty, 050010, Kazakhstan
| | - A I Kydyrmanov
- SPC for Microbiology and Virology, Almaty, 050010, Kazakhstan
| | - E T Kasymbekov
- SPC for Microbiology and Virology, Almaty, 050010, Kazakhstan
| | - S E Asanova
- SPC for Microbiology and Virology, Almaty, 050010, Kazakhstan
| | - K D Daulbayeva
- SPC for Microbiology and Virology, Almaty, 050010, Kazakhstan
| | - E Y Khan
- SPC for Microbiology and Virology, Almaty, 050010, Kazakhstan
| |
Collapse
|
3
|
Fan W, Xu Y, Zhang P, Chen P, Zhu Y, Cheng Z, Zhao X, Liu Y, Liu J. Analysis of molecular evolution of nucleocapsid protein in Newcastle disease virus. Oncotarget 2017; 8:97127-97136. [PMID: 29228598 PMCID: PMC5722550 DOI: 10.18632/oncotarget.21373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/30/2017] [Indexed: 11/25/2022] Open
Abstract
The present study investigated the molecular evolution of nucleocapsid protein (NP) in different Newcastle disease virus (NDV) genotypes. The evolutionary timescale and rate were estimated using the Bayesian Markov chain Monte Carlo (MCMC) method. The p-distance, Bayesian skyline plot (BSP), and positively selected sites were also analyzed. The MCMC tree indicated that NDV diverged about 250 years ago with a rapid evolution rate (1.059 × 10-2 substitutions/site/year) and that different NDV genotypes formed three lineages. The p-distance results reflected the great genetic diversity of NDV. BSP analysis suggested that the effective population size of NDV has been increasing since 2000 and that the basic reproductive number (R0) of NDV ranged from 1.003 to 1.006. The abundance of negatively selected sites in the NP and the mean dN/dS value of 0.07 indicated that the NP of NDV may have undergone purifying selection. However, the predicted positively selected site at position 370 was located in the known effective epitopic region of the NP. In conclusion, although NDV evolved at a high rate and showed great genetic diversity, the structure and function of the NP had been well conserved. However, R0>1 suggests that NDV might have been causing an epidemic since the time of radiation.
Collapse
Affiliation(s)
- Wentao Fan
- College of Animal Medicine and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, PR China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an 271018, China
| | - Yuliang Xu
- Research Center for Animal Disease Control Engineering Shandong Province, Shandong Agricultural University, Tai'an 271018, PR China
| | - Pu Zhang
- Central Hospital of Tai'an City, Tai'an 271018, China
| | - Peng Chen
- Research Center for Animal Disease Control Engineering Shandong Province, Shandong Agricultural University, Tai'an 271018, PR China
| | - Yiran Zhu
- College of Animal Medicine and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, PR China
| | - Ziqiang Cheng
- College of Animal Medicine and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, PR China
| | - Xiaona Zhao
- College of Animal Medicine and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, PR China
| | - Yongxia Liu
- College of Animal Medicine and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, PR China
| | - Jianzhu Liu
- College of Animal Medicine and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, PR China.,Research Center for Animal Disease Control Engineering Shandong Province, Shandong Agricultural University, Tai'an 271018, PR China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
4
|
Zhao P, Sun L, Sun X, Li S, Zhang W, Pulscher LA, Chai H, Xing M. Newcastle disease virus from domestic mink, China, 2014. Vet Microbiol 2017; 198:104-107. [DOI: 10.1016/j.vetmic.2016.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 11/29/2016] [Accepted: 12/02/2016] [Indexed: 01/21/2023]
|
5
|
Ahmadi E, Pourbakhsh SA, Ahmadi M, Mardani K, Talebi A. Phylogenetic characterization of virulent Newcastle disease viruses isolated during outbreaks in northwestern Iran in 2010. Arch Virol 2016; 161:3151-60. [PMID: 27542379 DOI: 10.1007/s00705-016-3021-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 08/17/2016] [Indexed: 10/21/2022]
Abstract
The northwest of Iran shares long borders with three neighboring countries; therefore, it is considered one of the main entry portals of Newcastle disease virus (NDV) into the country. Ten virulent NDVs were recovered from 19 poultry farms of various prefectures in northwestern Iran during Newcastle disease outbreaks in 2010. The isolates were genotypically analyzed using an F-gene-specific reverse transcription polymerase chain reaction (RT-PCR) assay. The amplified F gene (nucleotides 189-1666) sequences of the NDV isolates were compared phylogenetically with those of previously published strains in GenBank. All of the NDV isolates belonged to genotype VIIb and were closely related to some isolates from Iran, Russia, and Sweden. Therefore, it can be postulated that these isolates evolved from previously reported strains. The velogenic viruses carried the motif (112)R-R-Q-K-R/F(117) at the F0 cleavage site and a unique substitution of (190)L→F which had never been reported in any NDV genotype VIIb isolate. They shared high sequence similarity with each other but were distinct from current NDV vaccines and NDV strains reported from other countries. This information is fundamental for improving the efficacy of controlling strategies and vaccine development for NDV.
Collapse
Affiliation(s)
- Elham Ahmadi
- Department of Veterinary Pathobiology, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran.
| | - Seyed Ali Pourbakhsh
- Department of Poultry Diseases, Razi Vaccine and Serum Research Institute, Karaj, Iran
| | - Malahat Ahmadi
- Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, West Azarbaijan, Iran
| | - Karim Mardani
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, West Azarbaijan, Iran
| | - Alireza Talebi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, West Azarbaijan, Iran
| |
Collapse
|
6
|
Kang Y, Xiang B, Yuan R, Zhao X, Feng M, Gao P, Li Y, Li Y, Ning Z, Ren T. Phylogenetic and Pathotypic Characterization of Newcastle Disease Viruses Circulating in South China and Transmission in Different Birds. Front Microbiol 2016; 7:119. [PMID: 26903997 PMCID: PMC4746259 DOI: 10.3389/fmicb.2016.00119] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/22/2016] [Indexed: 12/14/2022] Open
Abstract
Although Newcastle disease virus (NDV) with high pathogenicity has frequently been isolated in poultry in China since 1948, the mode of its transmission among avian species remains largely unknown. Given that various wild bird species have been implicated as sources of transmission, in this study we genotypically and pathotypically characterized 23 NDV isolates collected from chickens, ducks, and pigeons in live bird markets (LBMs) in South China as part of an H7N9 surveillance program during December 2013–February 2014. To simulate the natural transmission of different kinds of animals in LBMs, we selected three representative NDVs—namely, GM, YF18, and GZ289—isolated from different birds to evaluate the pathogenicity and transmission of the indicated viruses in chickens, ducks, and pigeons. Furthermore, to investigate the replication and shedding of NDV in poultry, we inoculated the chickens, ducks, and pigeons with 106 EID50 of each virus via intraocular and intranasal routes. Eight hour after infection, the naïve contact groups were housed with those inoculated with each of the viruses as a means to monitor contact transmission. Our results indicated that genetically diverse viruses circulate in LBMs in South China's Guangdong Province and that NDV from different birds have different tissue tropisms and host ranges when transmitted in different birds. We therefore propose the continuous epidemiological surveillance of LBMs to support the prevention of the spread of these viruses in different birds, especially chickens, and highlight the need for studies of the virus–host relationship.
Collapse
Affiliation(s)
- Yinfeng Kang
- Key Laboratory of Animal Vaccine Development, College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong ProvinceGuangzhou, China
| | - Bin Xiang
- Key Laboratory of Animal Vaccine Development, College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong ProvinceGuangzhou, China
| | - Runyu Yuan
- Key Laboratory of Animal Vaccine Development, College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong ProvinceGuangzhou, China; Key Laboratory for Repository and Application of Pathogenic Microbiology, Research Center for Pathogens Detection Technology of Emerging Infectious Diseases, Guangdong Provincial Center for Disease Control and PreventionGuangzhou, China
| | - Xiaqiong Zhao
- Key Laboratory of Animal Vaccine Development, College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong ProvinceGuangzhou, China
| | - Minsha Feng
- Key Laboratory of Animal Vaccine Development, College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong ProvinceGuangzhou, China
| | - Pei Gao
- Key Laboratory of Animal Vaccine Development, College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong ProvinceGuangzhou, China
| | - Yanling Li
- Key Laboratory of Animal Vaccine Development, College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong ProvinceGuangzhou, China
| | - Yulian Li
- Key Laboratory of Animal Vaccine Development, College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong ProvinceGuangzhou, China
| | - Zhangyong Ning
- Key Laboratory of Animal Vaccine Development, College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Tao Ren
- Key Laboratory of Animal Vaccine Development, College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong ProvinceGuangzhou, China
| |
Collapse
|
7
|
Miller PJ, Dimitrov KM, Williams-Coplin D, Peterson MP, Pantin-Jackwood MJ, Swayne DE, Suarez DL, Afonso CL. International Biological Engagement Programs Facilitate Newcastle Disease Epidemiological Studies. Front Public Health 2015; 3:235. [PMID: 26539424 PMCID: PMC4609827 DOI: 10.3389/fpubh.2015.00235] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/30/2015] [Indexed: 11/13/2022] Open
Abstract
Infections of poultry species with virulent strains of Newcastle disease virus (NDV) cause Newcastle disease (ND), one of the most economically significant and devastating diseases for poultry producers worldwide. Biological engagement programs between the Southeast Poultry Research Laboratory (SEPRL) of the United States Department of Agriculture and laboratories from Russia, Pakistan, Ukraine, Kazakhstan, and Indonesia collectively have produced a better understanding of the genetic diversity and evolution of the viruses responsible for ND, which is crucial for the control of the disease. The data from Kazakhstan, Russia, and Ukraine identified possible migratory routes for birds that may carry both virulent NDV (vNDV) and NDV of low virulence into Europe. In addition, related NDV strains were isolated from wild birds in Ukraine and Nigeria, and from birds in continental USA, Alaska, Russia, and Japan, identifying wild birds as a possible mechanism of intercontinental spread of NDV of low virulence. More recently, the detection of new sub-genotypes of vNDV suggests that a new, fifth, panzootic of ND has already originated in Southeast Asia, extended to the Middle East, and is now entering into Eastern Europe. Despite expected challenges when multiple independent laboratories interact, many scientists from the collaborating countries have successfully been trained by SEPRL on molecular diagnostics, best laboratory practices, and critical biosecurity protocols, providing our partners the capacity to further train other employes and to identify locally the viruses that cause this OIE listed disease. These and other collaborations with partners in Mexico, Bulgaria, Israel, and Tanzania have allowed SEPRL scientists to engage in field studies, to elucidate more aspects of ND epidemiology in endemic countries, and to understand the challenges that the scientists and field veterinarians in these countries face on a daily basis. Finally, new viral characterization tools have been developed and are now available to the scientific community.
Collapse
Affiliation(s)
- Patti J. Miller
- Exotic and Emerging Avian Viral Diseases, Southeast Poultry Research Center, United States Department of Agriculture – Agricultural Research Service, Athens, GA, USA
| | - Kiril M. Dimitrov
- Exotic and Emerging Avian Viral Diseases, Southeast Poultry Research Center, United States Department of Agriculture – Agricultural Research Service, Athens, GA, USA
- National Diagnostic and Research Veterinary Medicine Institute, Sofia, Bulgaria
| | - Dawn Williams-Coplin
- Exotic and Emerging Avian Viral Diseases, Southeast Poultry Research Center, United States Department of Agriculture – Agricultural Research Service, Athens, GA, USA
| | - Melanie P. Peterson
- Office of International Research Programs, George Washington Carver Center, United States Department of Agriculture – Agricultural Research Service, Beltsville, MD, USA
| | - Mary J. Pantin-Jackwood
- Exotic and Emerging Avian Viral Diseases, Southeast Poultry Research Center, United States Department of Agriculture – Agricultural Research Service, Athens, GA, USA
| | - David E. Swayne
- Exotic and Emerging Avian Viral Diseases, Southeast Poultry Research Center, United States Department of Agriculture – Agricultural Research Service, Athens, GA, USA
| | - David L. Suarez
- Exotic and Emerging Avian Viral Diseases, Southeast Poultry Research Center, United States Department of Agriculture – Agricultural Research Service, Athens, GA, USA
| | - Claudio L. Afonso
- Exotic and Emerging Avian Viral Diseases, Southeast Poultry Research Center, United States Department of Agriculture – Agricultural Research Service, Athens, GA, USA
| |
Collapse
|
8
|
Bogoyavlenskiy A, Berezin V, Prilipov A, Usachev E, Korotetskiy I, Zaitceva I, Kydyrmanov A, Sayatov M. Characterization of pigeon paramyxoviruses (Newcastle disease virus) isolated in Kazakhstan in 2005. Virol Sin 2012; 27:93-9. [PMID: 22492000 DOI: 10.1007/s12250-012-3234-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 02/27/2012] [Indexed: 11/25/2022] Open
Abstract
Isolates of Newcastle disease virus (NDV) from deceased wild and domestic pigeons in Kazakhstan were obtained from the Almaty region during 2005 and were genotypically analyzed by using reverse transcription polymerase chain reaction (RT-PCR) with primers specific to the viral fusion (F) protein gene. Part of the amplified F protein DNA product (nucleotide sequence 47-422) and the deduced amino acid sequences were compared phylogenetically with those from strains previously reported in other geographic regions. Phylogenetic analysis indicated that the Kazakhstanian pigeon paramyxovirus type 1 (PPMV-1) isolates belong to genotype VI or 4bii. To our knowledge, this is the first reported VI isolates that possess the sequences of ¹¹²GKRQKR¹¹⁶ * F¹¹⁷ within the F0 protein. The information is fundamental to improving the efficiency of control strategies and vaccine development for NDV.
Collapse
|
9
|
Cai S, Li J, Wong MT, Jiao P, Fan H, Liu D, Liao M, Jiang J, Shi M, Lam TTY, Ren T, Leung FCC. Genetic characterization and evolutionary analysis of 4 Newcastle disease virus isolate full genomes from waterbirds in South China during 2003–2007. Vet Microbiol 2011; 152:46-54. [DOI: 10.1016/j.vetmic.2011.04.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 04/03/2011] [Accepted: 04/14/2011] [Indexed: 11/28/2022]
|
10
|
Maminiaina OF, Gil P, Briand FX, Albina E, Keita D, Andriamanivo HR, Chevalier V, Lancelot R, Martinez D, Rakotondravao R, Rajaonarison JJ, Koko M, Andriantsimahavandy AA, Jestin V, Servan de Almeida R. Newcastle disease virus in Madagascar: identification of an original genotype possibly deriving from a died out ancestor of genotype IV. PLoS One 2010; 5:e13987. [PMID: 21085573 PMCID: PMC2981552 DOI: 10.1371/journal.pone.0013987] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 10/17/2010] [Indexed: 11/25/2022] Open
Abstract
In Madagascar, Newcastle disease (ND) has become enzootic after the first documented epizootics in 1946, with recurrent annual outbreaks causing mortality up to 40%. Four ND viruses recently isolated in Madagascar were genotypically and pathotypically characterised. By phylogenetic inference based on the F and HN genes, and also full-genome sequence analyses, the NDV Malagasy isolates form a cluster distant enough to constitute a new genotype hereby proposed as genotype XI. This new genotype is presumably deriving from an ancestor close to genotype IV introduced in the island probably more than 50 years ago. Our data show also that all the previously described neutralising epitopes are conserved between Malagasy and vaccine strains. However, the potential implication in vaccination failures of specific amino acid substitutions predominantly found on surface-exposed epitopes of F and HN proteins is discussed.
Collapse
Affiliation(s)
| | - Patricia Gil
- CIRAD, BIOS Department, UMR CMAEE, Montpellier, France
| | | | | | - Djénéba Keita
- CIRAD, BIOS Department, UMR CMAEE, Montpellier, France
| | | | | | | | | | | | | | - M. Koko
- Antananarivo University Madagascar, Antananarivo, Madagascar
| | | | - Véronique Jestin
- Anses-Ploufragan Plouzané Laboratory, VIPAC Unit, Ploufragan, France
| | | |
Collapse
|
11
|
Zhang R, Wang X, Su J, Zhao J, Zhang G. Isolation and analysis of two naturally-occurring multi-recombination Newcastle disease viruses in China. Virus Res 2010; 151:45-53. [PMID: 20363269 DOI: 10.1016/j.virusres.2010.03.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2010] [Revised: 03/25/2010] [Accepted: 03/26/2010] [Indexed: 10/19/2022]
Abstract
Two Newcastle disease viruses (NDV), designated QG/Hebei/07 and XD/Shandong/08, were isolated from infected chicken flocks in China in 2007 and 2008, respectively. The results of phylogenetic and recombination analyses on complete NDV genome sequences (excluding terminal segments) show that the QG/Hebei/07 isolate had evidence of recombination in the M and F genes, and recombination in the XD/Shandong/08 isolate in the F, L genes and the non-coding region between the HN and L genes. These two naturally-occurring recombinants we found to be descended from at least three putative parents from vaccine and circulating virus lineages. Moreover, we found that evidence that homologous recombination also occurred between NDV viruses of chicken and swine lineages, while the major putative parent is likely to have been derived from the chicken avirulent vaccine lineage. This study suggests that homologous recombination can occur in all coding and non-coding regions of the NDV genome and a live vaccine strain is capable of recombination with circulating viruses resulting in significant genetic change. The potential role of swine-origin viruses in the evolution of virulent NDV warrants further investigation.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | | | | | | | | |
Collapse
|
12
|
Rui Z, Juan P, Jingliang S, Jixun Z, Xiaoting W, Shouping Z, Xiaojiao L, Guozhong Z. Phylogenetic characterization of Newcastle disease virus isolated in the mainland of China during 2001–2009. Vet Microbiol 2010; 141:246-57. [DOI: 10.1016/j.vetmic.2009.09.020] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2009] [Revised: 09/10/2009] [Accepted: 09/22/2009] [Indexed: 12/14/2022]
|
13
|
Bogoyavlenskiy A, Berezin V, Prilipov A, Usachev E, Lyapina O, Korotetskiy I, Zaitceva I, Asanova S, Kydyrmanov A, Daulbaeva K, Shakhvorostova L, Sayatov M, King D. Newcastle disease outbreaks in Kazakhstan and Kyrgyzstan during 1998, 2000, 2001, 2003, 2004, and 2005 were caused by viruses of the genotypes VIIb and VIId. Virus Genes 2009; 39:94-101. [DOI: 10.1007/s11262-009-0370-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2008] [Accepted: 05/07/2009] [Indexed: 11/29/2022]
|
14
|
Molecular characterization and phylogenetic analysis of new Newcastle disease virus isolates from the mainland of China. Res Vet Sci 2008; 85:612-6. [PMID: 18405927 DOI: 10.1016/j.rvsc.2008.02.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Revised: 02/21/2008] [Accepted: 02/22/2008] [Indexed: 12/16/2022]
Abstract
Seventy-nine velogenic Newcastle disease virus (NDV) isolates were obtained from infected chicken flocks during the outbreaks of Newcastle disease (ND) in various regions of the mainland of China in 2006. The F gene fragment (535bp, from nt 47 to 581 of the F gene) which codes the main functional region of the F protein was obtained by RT-PCR and sequenced. All sequences obtained in this study have been submitted to GenBank. All the isolates have the motif (112)R-R-Q/R-K/R-R-F(117) at the cleavage site of the fusion protein, which is typical of velogenic NDV isolates. For genotyping, a phylogenetic tree based on nucleotides 47-435 of the F gene was constructed, and the 79 isolates could be divided into two genotypes, namely VIId and III. Most of the isolates proved to be of genotype VIId; only two isolates were of genotype III. Genotype VIId NDV has been the predominant pathogen responsible for most Newcastle disease outbreaks in China. The proportion of isolates of genotype VIId NDV shows an increasing trend, according to studies on the molecular epidemiology of NDV in China from 2002 to 2006.
Collapse
|
15
|
Pathotypical characterization and molecular epidemiology of Newcastle disease virus isolates from different hosts in China from 1996 to 2005. J Clin Microbiol 2007; 46:601-11. [PMID: 18077643 DOI: 10.1128/jcm.01356-07] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Thirty Newcastle disease virus (NDV) strains isolated from outbreaks in China during 1996 to 2005 were characterized pathotypically and genotypically. All strains except one were velogenic. An analysis of the variable region (nucleotides 47 to 420) of the F gene indicated that 6 isolates belonged to genotype II, 3 to genotype III, 1 (isolated from a pigeon) to genotype VI, and 20 to genotype VII. Isolates belonging to genotype VII were further divided into five subtypes, VIIa, VIIb, VIIc, VIId, and VIIe, and subtype VIId was made up of VIId1 to VIId5. These results showed that genotype VII isolates might have been the most prevalent in China during the past two decades. Genotype VII isolates shared high homology, but the homology was less than that between genotype VII viruses and the vaccine virus LaSota. Among these NDV isolates, 25 isolates had the velogenic motif (112)R/K-R-Q-K/R-R-F(117) that is consistent with results of the biological tests. However, four of five LaSota-type isolates that contained the lentogenic motif (112)G-R-Q-G-R-L(117) were velogenic, except SY/03, in the view of the biological test. The majority of genotype VII isolates had lost one or two N-glycosylation sites. Finally, a cross-protection experiment in which specific-pathogen-free chickens vaccinated with LaSota were challenged by six NDV isolates showed that more than three isolates were antigenic variants that could be responsible for recent outbreaks of Newcastle disease.
Collapse
|
16
|
Liu H, Wang Z, Wu Y, Zheng D, Sun C, Bi D, Zuo Y, Xu T. Molecular epidemiological analysis of Newcastle disease virus isolated in China in 2005. J Virol Methods 2006; 140:206-11. [PMID: 17129615 DOI: 10.1016/j.jviromet.2006.10.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Revised: 10/20/2006] [Accepted: 10/25/2006] [Indexed: 10/23/2022]
Abstract
Eighty-three strains of Newcastle disease virus (NDV) were obtained from outbreaks in chickens, pigeons, geese, and ducks in China in 2005 and characterized genotypically. The main functional region of the F gene (535 nucleotides) was amplified and sequenced. A phylogenetic tree based on nucleotides 47-435 of the F gene was created using sequences from 83 isolates and representative NDV sequences obtained from GenBank. Phylogenetic analysis showed that all newly characterized strains belonged to six genetic groups: I, II, III, VIb, VIIc, and VIId. All the isolates belonging to groups I and II (14 total) were lentogenic according to the amino acid sequences of the fusion protein cleavage site, and either V4 or LaSota-type, depending on the vaccines that were used. Most isolates (64 total) were classified in group VIId, a predominant genotype responsible for most Newcastle disease outbreaks since the end of the last century. One strain, NDV05-055, was in group VIIc, three pigeon strains were in group VIb, and one isolate, NDV05-041, was in group III, and characterized as a velogenic strain. This study revealed that genotype VIId was the major NDV strain responsible for the 2005 ND epizoonosis that occurred in China.
Collapse
Affiliation(s)
- Hualei Liu
- National Reference Laboratory for Newcastle Disease, China Animal Health and Epidemiology Center, Qingdao 266032, China
| | | | | | | | | | | | | | | |
Collapse
|