1
|
Barros SP, Hefni E, Nepomuceno R, Offenbacher S, North K. Targeting epigenetic mechanisms in periodontal diseases. Periodontol 2000 2019; 78:174-184. [PMID: 30198133 DOI: 10.1111/prd.12231] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Epigenetic factors are heritable genome modifications that potentially impact gene transcription, contributing to disease states. Epigenetic marks play an important role in chronic inflammatory conditions, as observed in periodontal diseases, by allowing microbial persistence or by permitting microbial insult to play a role in the so-called 'hit-and-run' infectious mechanism, leading to lasting pathogen interference with the host genome. Epigenetics also affects the health sciences by providing a dynamic mechanistic framework to explain the way in which environmental and behavioral factors interact with the genome to alter disease risk. In this article we review current knowledge of epigenome regulation in light of the multifactorial nature of periodontal diseases. We discuss epigenetic tagging in identified genes, and consider the potential implications of epigenetic changes on host-microbiome dynamics in chronic inflammatory states and in response to environmental stressors. The most recent advances in genomic technologies have placed us in a position to analyze interaction effects (eg, between periodontal disease and type 2 diabetes mellitus), which can be investigated through epigenome-wide association analysis. Finally, because of the individualized traits of epigenetic biomarkers, pharmacoepigenomic perspectives are also considered as potentially novel therapeutic approaches for improving periodontal disease status.
Collapse
Affiliation(s)
- Silvana P Barros
- Department of Periodontology, University of North Carolina, Chapel Hil, NC, USA
| | - Eman Hefni
- Department of Periodontology, School of Dentistry, Umm Al Qura University, Makkah, Saudi Arabia
| | - Rafael Nepomuceno
- Department of Periodontology, University of North Carolina, Chapel Hil, NC, USA
| | - Steven Offenbacher
- Department of Periodontology, University of North Carolina, Chapel Hil, NC, USA
| | - Kari North
- Department of Epidemiology and Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
2
|
Zhang Y, Wang H, Liu Y, Wang C, Wang J, Long C, Guo W, Sun X. Baicalein inhibits growth of Epstein-Barr virus-positive nasopharyngeal carcinoma by repressing the activity of EBNA1 Q-promoter. Biomed Pharmacother 2018; 102:1003-1014. [PMID: 29710517 DOI: 10.1016/j.biopha.2018.03.114] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 03/19/2018] [Accepted: 03/19/2018] [Indexed: 12/12/2022] Open
Abstract
Epstein-Barr virus (EBV) can establish a life-long latent infection in the host and is associated with various human malignancies, including nasopharyngeal carcinoma (NPC), the most common cancer originated from nasopharynx. EBV nuclear antigen 1 (EBNA1) is the only viral protein absolutely demanded for segregation, replication, transcription and maintenance of EBV viral genome in host cells. Baicalein, a bioactive flavonoid compound purified from the root of Scutellariae baicaleinsis, displays anti-inflammatory, immunosuppressive, and anti-tumor properties. In this study, the therapeutic effects and functional mechanism of baicalein on EBV-positive human NPC were determined. Cell Counting Kit-8 assays and cell formation colony were performed to investigate that baicalein can suppress proliferation of EBV-infected human NPC cells. Flow cytometric and hoechst 33258 staining results indicated that baicalein induced cell cycle arrest and apoptosis. Western blotting results demonstrated that baicalein down-regulates EBNA1 expression but not reduces the stability and half-life of EBNA1 in EBV-infected NPC cells. Additionally, the mRNA level of EBNA1 was examined by real time-PCR, the activity of EBNA1 Q promoter (Qp) was determined by dual luciferase reporter assay. Considering that transcription factor specificity protein 1 (Sp1) can maintain EBNA1 Qp active. Further analyses also elucidated that baicalein inhibits the expression of Sp1 while knock-down Sp1 by specific shRNAs decreases the expression and transcription levels of EBNA1. Therefore, the results suggested that baicalein may decrease EBNA1 expression level in EBV-positive NPC cells via inhibiting the activity of EBNA1 Q-promoter while over-expression of EBNA1 attenuate the inhibitory effect of baicalein. Finally, it was found that baicalein may strongly reduce growth of tumor in the mouse xenograft model of EBV-positive NPC. These results indicated that baicalein inhibits growth of EBV-positive NPC by repressing the activity of EBNA1 Q-promoter. Baicalein may be used as a therapeutic agent to treat EBV-positive NPC.
Collapse
Affiliation(s)
- Yaqian Zhang
- Stat Key Laboratory of Virology, Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, PR China
| | - Huan Wang
- Stat Key Laboratory of Virology, Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, PR China
| | - Yu Liu
- Stat Key Laboratory of Virology, Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, PR China
| | - Chao Wang
- Stat Key Laboratory of Virology, Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, PR China
| | - Jingchao Wang
- Stat Key Laboratory of Virology, Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, PR China
| | - Cong Long
- Stat Key Laboratory of Virology, Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, PR China
| | - Wei Guo
- Department of Pathology and Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, PR China
| | - Xiaoping Sun
- Stat Key Laboratory of Virology, Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, PR China; State Key Laboratory of Virology, Wuhan University, Wuhan, 430072, PR China.
| |
Collapse
|
3
|
Abstract
Viral latency can be considered a metastable, nonproductive infection state that is capable of subsequent reactivation to repeat the infection cycle. Viral latent infections have numerous associated pathologies, including cancer, birth defects, neuropathy, cardiovascular disease, chronic inflammation, and immunological dysfunctions. The mechanisms controlling the establishment, maintenance, and reactivation from latency are complex and diversified among virus families, species, and strains. Yet, as examined in this review, common properties of latent viral infections can be defined. Eradicating latent virus has become an important but elusive challenge and will require a more complete understanding of the mechanisms controlling these processes.
Collapse
|
4
|
Ernberg I, Niller HH, Minarovits J. Epigenetic Alterations of Viral and Cellular Genomes in EBV-Infected Cells. EPIGENETICS AND HUMAN HEALTH 2016:91-122. [DOI: 10.1007/978-3-319-27186-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Khan MS, Gupta AK, Kumar M. ViralEpi v1.0: a high-throughput spectrum of viral epigenomic methylation profiles from diverse diseases. Epigenomics 2015; 8:67-75. [PMID: 26678852 DOI: 10.2217/epi.15.95] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
AIMS To develop a computational resource for viral epigenomic methylation profiles from diverse diseases. MATERIALS & METHODS Methylation patterns of Epstein-Barr virus and hepatitis B virus genomic regions are provided as web platform developed using open source Linux-Apache-MySQL-PHP (LAMP) bundle: programming and scripting languages, that is, HTML, JavaScript and PERL. RESULTS A comprehensive and integrated web resource ViralEpi v1.0 is developed providing well-organized compendium of methylation events and statistical analysis associated with several diseases. Additionally, it also facilitates 'Viral EpiGenome Browser' for user-affable browsing experience using JavaScript-based JBrowse. CONCLUSION This web resource would be helpful for research community engaged in studying epigenetic biomarkers for appropriate prognosis and diagnosis of diseases and its various stages.
Collapse
Affiliation(s)
- Mohd Shoaib Khan
- Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific & Industrial Research (CSIR), Sector 39-A, Chandigarh-160036, India
| | - Amit Kumar Gupta
- Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific & Industrial Research (CSIR), Sector 39-A, Chandigarh-160036, India
| | - Manoj Kumar
- Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific & Industrial Research (CSIR), Sector 39-A, Chandigarh-160036, India
| |
Collapse
|
6
|
Tempera I, Lieberman PM. Epigenetic regulation of EBV persistence and oncogenesis. Semin Cancer Biol 2014; 26:22-9. [PMID: 24468737 DOI: 10.1016/j.semcancer.2014.01.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 12/30/2013] [Accepted: 01/09/2014] [Indexed: 12/29/2022]
Abstract
Epigenetic mechanisms play a fundamental role in generating diverse and heritable patterns of viral and cellular gene expression. Epstein-Barr virus (EBV) can adopt a variety of gene expression programs that are necessary for long-term viral persistence and latency in multiple host-cell types and conditions. The latent viral genomes assemble into chromatin structures with different histone and DNA modifications patterns that control viral gene expression. Variations in nucleosome organization and chromatin conformations can also influence gene expression by coordinating physical interactions between different regulatory elements. The viral-encoded and host-cell factors that control these epigenetic features are beginning to be understood at the genome-wide level. These epigenetic regulators can also influence viral pathogenesis by expanding tissue tropism, evading immune detection, and driving host-cell carcinogenesis. Here, we review some of the recent findings and perspectives on how the EBV epigenome plays a central role in viral latency and viral-associated carcinogenesis.
Collapse
Affiliation(s)
- Italo Tempera
- The Fels Institute, Department of Microbiology and Immunology, Temple School of Medicine, Philadelphia, PA 19140, United States.
| | | |
Collapse
|
7
|
Epigenetic regulation of EBV and KSHV latency. Curr Opin Virol 2013; 3:251-9. [PMID: 23601957 DOI: 10.1016/j.coviro.2013.03.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 03/07/2013] [Accepted: 03/13/2013] [Indexed: 12/25/2022]
Abstract
The gammaherpesviruses are unique for their capacity to establish a variety of gene expression programs during latent and lytic infection. This capacity enables the virus to control host-cell proliferation, prevent programmed cell death, elude immune cell detection, and ultimately adapt to a wide range of environmental and developmental changes in the host cell. This remarkable plasticity of gene expression results from the combined functionalities of viral and host factors that biochemically remodel and epigenetically modify the viral chromosome. These epigenetic modifications range from primary DNA methylations, to chromatin protein post-translational modifications, to higher-order chromosome conformations. In addition, gammaherpesviruses have acquired specialized tools to modulate the epigenetic processes that promote viral genome propagation and host-cell survival.
Collapse
|
8
|
Szenthe K, Koroknai A, Banati F, Bathori Z, Lozsa R, Burgyan J, Wolf H, Salamon D, Nagy K, Niller HH, Minarovits J. The 5' regulatory sequences of active miR-146a promoters are hypomethylated and associated with euchromatic histone modification marks in B lymphoid cells. Biochem Biophys Res Commun 2013; 433:489-95. [PMID: 23528241 DOI: 10.1016/j.bbrc.2013.03.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 03/06/2013] [Indexed: 12/28/2022]
Abstract
Although the microRNA miR-146a is an important regulator of immunological processes and contributes to the pathogenesis of certain B cell lymphoma types, in B cells the epigenetic regulation of miR-146a expresion has not been studied yet. To elucidate the mechanisms controlling miR-146a expression in B lymphoid cells we analysed epigenetic marks, including CpG methylation and histone modifications, at the miR-146a promoter in well characterized Epstein-Barr virus (EBV) positive and EBV negative B cell lines. In addition, EBV positive epithelial cell lines were also studied as controls. In cells with a silent miR-146a promoter the 5' regulatory sequences comprising a CpG island were devoid of activating histone modifications, independently of the methylation pattern of the regulatory region. The regulatory sequences flanking the inactive miR-146 promoter were hypermethylated at CpG dinucleotides in the EBV positive Burkitt's lymphoma (BL) cell lines of memory B cell phenotype (Rael and Akata), partially methylated in the mammary carcinoma cell lines C2G6 and C4A3, and completely unmethylated in the nasopharyngeal carcinoma cell line C666-1. In contrast, in EBV positive cell lines of activated B cell phenotype, and EBV negative BL cell lines the invariably unmethylated 5' regulatory sequences of active miR-146a promoters were enriched in the euchromatic histone modification marks acetylated histone H3, acetylated histone H4, and histone H3 dimethylated at lysine 4. The euchromatic histone modification marks extended over the immediate vicinity of the transcriptional initiation site to the 3' intron, too. We concluded that similarly to the promoters of protein coding genes, both DNA methylation and histone modifications contribute to the host cell dependent expression of miR-146a.
Collapse
Affiliation(s)
- Kalman Szenthe
- Microbiological Research Group, National Center for Epidemiology, Piheno ut 1, H-1529 Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Hernando H, Shannon-Lowe C, Islam AB, Al-Shahrour F, Rodríguez-Ubreva J, Rodríguez-Cortez VC, Javierre BM, Mangas C, Fernández AF, Parra M, Delecluse HJ, Esteller M, López-Granados E, Fraga MF, López-Bigas N, Ballestar E. The B cell transcription program mediates hypomethylation and overexpression of key genes in Epstein-Barr virus-associated proliferative conversion. Genome Biol 2013; 14:R3. [PMID: 23320978 PMCID: PMC3663113 DOI: 10.1186/gb-2013-14-1-r3] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 01/15/2013] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Epstein-Barr virus (EBV) infection is a well characterized etiopathogenic factor for a variety of immune-related conditions, including lymphomas, lymphoproliferative disorders and autoimmune diseases. EBV-mediated transformation of resting B cells to proliferating lymphoblastoid cells occurs in early stages of infection and is an excellent model for investigating the mechanisms associated with acquisition of unlimited growth. RESULTS We investigated the effects of experimental EBV infection of B cells on DNA methylation profiles by using high-throughput analysis. Remarkably, we observed hypomethylation of around 250 genes, but no hypermethylation. Hypomethylation did not occur at repetitive sequences, consistent with the absence of genomic instability in lymphoproliferative cells. Changes in methylation only occurred after cell divisions started, without the participation of the active demethylation machinery, and were concomitant with acquisition by B cells of the ability to proliferate. Gene Ontology analysis, expression profiling, and high-throughput analysis of the presence of transcription factor binding motifs and occupancy revealed that most genes undergoing hypomethylation are active and display the presence of NF-κB p65 and other B cell-specific transcription factors. Promoter hypomethylation was associated with upregulation of genes relevant for the phenotype of proliferating lymphoblasts. Interestingly, pharmacologically induced demethylation increased the efficiency of transformation of resting B cells to lymphoblastoid cells, consistent with productive cooperation between hypomethylation and lymphocyte proliferation. CONCLUSIONS Our data provide novel clues on the role of the B cell transcription program leading to DNA methylation changes, which we find to be key to the EBV-associated conversion of resting B cells to proliferating lymphoblasts.
Collapse
|
10
|
Palermo RD, Webb HM, West MJ. RNA polymerase II stalling promotes nucleosome occlusion and pTEFb recruitment to drive immortalization by Epstein-Barr virus. PLoS Pathog 2011; 7:e1002334. [PMID: 22046134 PMCID: PMC3203192 DOI: 10.1371/journal.ppat.1002334] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 09/08/2011] [Indexed: 12/12/2022] Open
Abstract
Epstein-Barr virus (EBV) immortalizes resting B-cells and is a key etiologic agent in the development of numerous cancers. The essential EBV-encoded protein EBNA 2 activates the viral C promoter (Cp) producing a message of ~120 kb that is differentially spliced to encode all EBNAs required for immortalization. We have previously shown that EBNA 2-activated transcription is dependent on the activity of the RNA polymerase II (pol II) C-terminal domain (CTD) kinase pTEFb (CDK9/cyclin T1). We now demonstrate that Cp, in contrast to two shorter EBNA 2-activated viral genes (LMP 1 and 2A), displays high levels of promoter-proximally stalled pol II despite being constitutively active. Consistent with pol II stalling, we detect considerable pausing complex (NELF/DSIF) association with Cp. Significantly, we observe substantial Cp-specific pTEFb recruitment that stimulates high-level pol II CTD serine 2 phosphorylation at distal regions (up to +75 kb), promoting elongation. We reveal that Cp-specific pol II accumulation is directed by DNA sequences unfavourable for nucleosome assembly that increase TBP access and pol II recruitment. Stalled pol II then maintains Cp nucleosome depletion. Our data indicate that pTEFb is recruited to Cp by the bromodomain protein Brd4, with polymerase stalling facilitating stable association of pTEFb. The Brd4 inhibitor JQ1 and the pTEFb inhibitors DRB and Flavopiridol significantly reduce Cp, but not LMP1 transcript production indicating that Brd4 and pTEFb are required for Cp transcription. Taken together our data indicate that pol II stalling at Cp promotes transcription of essential immortalizing genes during EBV infection by (i) preventing promoter-proximal nucleosome assembly and ii) necessitating the recruitment of pTEFb thereby maintaining serine 2 CTD phosphorylation at distal regions.
Collapse
Affiliation(s)
- Richard D. Palermo
- School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Helen M. Webb
- School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Michelle J. West
- School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| |
Collapse
|
11
|
Binding of CCCTC-binding factor in vivo to the region located between Rep* and the C promoter of Epstein–Barr virus is unaffected by CpG methylation and does not correlate with Cp activity. J Gen Virol 2009; 90:1183-1189. [DOI: 10.1099/vir.0.007344-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this study, the binding of the insulator protein CCCTC-binding factor (CTCF) to the region located between Rep* and the C promoter (Cp) of Epstein–Barr virus (EBV) was analysed using chromatin immunoprecipitation and in vivo footprinting. CTCF binding was found to be independent of Cp usage in cell lines corresponding to the major EBV latency types. Bisulfite sequencing and an electrophoretic mobility-shift assay (using methylated and unmethylated probes) revealed that CTCF binding was insufficient to induce local CpG demethylation in certain cell lines and was unaffected by CpG methylation in the region between Rep* and Cp. In addition, CTCF binding to the latency promoter, Qp, did not correlate with Qp activity.
Collapse
|
12
|
Fejer G, Koroknai A, Banati F, Györy I, Salamon D, Wolf H, Niller HH, Minarovits J. Latency type-specific distribution of epigenetic marks at the alternative promoters Cp and Qp of Epstein-Barr virus. J Gen Virol 2008; 89:1364-1370. [PMID: 18474551 DOI: 10.1099/vir.0.83594-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Transcripts for the Epstein-Barr virus (EBV)-encoded nuclear antigens are initiated at the alternative promoters Wp, Cp and Qp. Although the host cell-dependent activity of Cp is regulated by DNA methylation, Qp is unmethylated independently of its activity. Because histone modifications affect the chromatin structure, we compared the levels of diacetylated histone H3, tetraacetylated histone H4 and histone H3 dimethylated on lysine 4 (H3K4me2) at Cp and Qp, in well characterized cell lines representing the major EBV latency types. We found an activity-dependent histone code: acetylated histones marked active Cp, whereas active Qp was selectively enriched both in acetylated histones and H3K4me2. We concluded that active (but not silent) Cp and Qp are located to 'acetylation islands' in latent, episomal EBV genomes, similar to the active chromatin domains of the human genome.
Collapse
Affiliation(s)
- György Fejer
- Max-Planck-Institut für Immunbiologie, Stübeweg 51, D-79108 Freiburg, Germany.,Microbiological Research Group, National Center for Epidemiology, Pihenö u. 1, H-1529 Budapest, Hungary
| | - Anita Koroknai
- Microbiological Research Group, National Center for Epidemiology, Pihenö u. 1, H-1529 Budapest, Hungary
| | - Ferenc Banati
- Microbiological Research Group, National Center for Epidemiology, Pihenö u. 1, H-1529 Budapest, Hungary
| | - Ildiko Györy
- Max-Planck-Institut für Immunbiologie, Stübeweg 51, D-79108 Freiburg, Germany.,Microbiological Research Group, National Center for Epidemiology, Pihenö u. 1, H-1529 Budapest, Hungary
| | - Daniel Salamon
- Microbiological Research Group, National Center for Epidemiology, Pihenö u. 1, H-1529 Budapest, Hungary
| | - Hans Wolf
- Department of Microbiology and Hygiene, University of Regensburg, Franz-Josef-Strauss-Allee 11, D-93053 Regensburg, Germany
| | - Hans Helmut Niller
- Department of Microbiology and Hygiene, University of Regensburg, Franz-Josef-Strauss-Allee 11, D-93053 Regensburg, Germany
| | - Janos Minarovits
- Microbiological Research Group, National Center for Epidemiology, Pihenö u. 1, H-1529 Budapest, Hungary
| |
Collapse
|
13
|
Gerle B, Koroknai A, Fejer G, Bakos A, Banati F, Szenthe K, Wolf H, Niller HH, Minarovits J, Salamon D. Acetylated histone H3 and H4 mark the upregulated LMP2A promoter of Epstein-Barr virus in lymphoid cells. J Virol 2007; 81:13242-7. [PMID: 17898065 PMCID: PMC2169097 DOI: 10.1128/jvi.01396-07] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We analyzed the levels of acetylated histones and histone H3 dimethylated on lysine 4 (H3K4me2) at the LMP2A promoter (LMP2Ap) of Epstein-Barr virus in well-characterized type I and type III lymphoid cell line pairs and additionally in the nasopharyngeal carcinoma cell line C666-1 by using chromatin immunoprecipitation. We found that enhanced levels of acetylated histones marked the upregulated LMP2Ap in lymphoid cells. In contrast, in C666-1 cells, the highly DNA-methylated, inactive LMP2Ap was also enriched in acetylated histones and H3K4me2. Our results suggest that the combinatorial effects of DNA methylation, histone acetylation, and H3K4me2 modulate the activity of LMP2Ap.
Collapse
Affiliation(s)
- Borbala Gerle
- Microbiological Research Group, National Center for Epidemiology, Pihenö u. 1, H-1529 Budapest, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|