1
|
Ito T. First reports of several viruses and a viroid including a novel vitivirus in Japan, found through virome analysis of bulk grape genetic resources. Virus Genes 2024; 60:684-694. [PMID: 39162928 DOI: 10.1007/s11262-024-02101-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 08/12/2024] [Indexed: 08/21/2024]
Abstract
Virome analysis was performed on 174 grape genetic resources from the National Agriculture and Food Research Organization, Japan. A total of 20 bulk samples was prepared by grouping the vines into batches of 6-10 plants. Each of the bulk samples was analyzed using high-throughput sequencing, which detected 27 viruses and 5 viroids, including six viruses and one viroid reported in Japan for the first time (grapevine viruses F, L, and T, grapevine Kizil Sapak virus, grapevine Syrah virus 1, grapevine satellite virus, and grapevine yellow speckle viroid 2). In addition, a novel vitivirus was detected with a maximum nucleotide sequence identity of only 58% to its closest relative, grapevine virus A (GVA). The genome of this novel virus was 7,461 nucleotides in length and encoded five open reading frames showing the typical genomic structure of vitiviruses. Phylogenetic trees of vitiviruses placed it in a distinct position nearest to GVA or grapevine virus F (GVF) in genomes and amino acids of deduced replication-associated protein (RAP) and coat protein (CP). The amino acid sequence identities of RAP and CP with GVA, GVF, and other vitiviruses were a maximum of 53% and 73%, respectively, which were significantly below the species demarcation threshold of 80% in the genus. The low identity and phylogenetic analyses indicate the discovery of a novel vitivirus species provisionally named grapevine virus P.
Collapse
Affiliation(s)
- Takao Ito
- Institute for Plant Protection, National Agriculture and Food Research Organization (NARO), Akitsu, Higashihiroshima, Hiroshima, 739-2494, Japan.
| |
Collapse
|
2
|
Mahillon M, Brodard J, Schoen R, Botermans M, Dubuis N, Groux R, Pannell JR, Blouin AG, Schumpp O. Revisiting a pollen-transmitted ilarvirus previously associated with angular mosaic of grapevine. Virus Res 2024; 344:199362. [PMID: 38508402 PMCID: PMC10979282 DOI: 10.1016/j.virusres.2024.199362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 03/22/2024]
Abstract
We report the characterization of a novel tri-segmented RNA virus infecting Mercurialis annua, a common crop weed and model species in plant science. The virus, named "Mercurialis latent virus" (MeLaV) was first identified in a mixed infection with the recently described Mercurialis orthotospovirus 1 (MerV1) on symptomatic plants grown in glasshouses in Lausanne (Switzerland). Both viruses were found to be transmitted by Thrips tabaci, which presumably help the inoculation of infected pollen in the case of MeLaV. Complete genome sequencing of the latter revealed a typical ilarviral architecture and close phylogenetic relationship with members of the Ilarvirus subgroup 1. Surprisingly, a short portion of MeLaV replicase was found to be identical to the partial sequence of grapevine angular mosaic virus (GAMV) reported in Greece in the early 1990s. However, we have compiled data that challenge the involvement of GAMV in angular mosaic of grapevine, and we propose alternative causal agents for this disorder. In parallel, three highly-conserved MeLaV isolates were identified in symptomatic leaf samples in The Netherlands, including a herbarium sample collected in 1991. The virus was also traced in diverse RNA sequencing datasets from 2013 to 2020, corresponding to transcriptomic analyses of M. annua and other plant species from five European countries, as well as metaviromics analyses of bees in Belgium. Additional hosts are thus expected for MeLaV, yet we argue that infected pollen grains have likely contaminated several sequencing datasets and may have caused the initial characterization of MeLaV as GAMV.
Collapse
Affiliation(s)
- Mathieu Mahillon
- Research group Virology, Bacteriology and Phytoplasmology, Department of Plant protection, Agroscope, Nyon, Switzerland
| | - Justine Brodard
- Research group Virology, Bacteriology and Phytoplasmology, Department of Plant protection, Agroscope, Nyon, Switzerland
| | - Ruben Schoen
- Netherlands Institute for Vectors, Invasive plants and Plant health (NIVIP), Netherlands Food and Consumer Product Safety Authority, Wageningen, The Netherlands
| | - Marleen Botermans
- Netherlands Institute for Vectors, Invasive plants and Plant health (NIVIP), Netherlands Food and Consumer Product Safety Authority, Wageningen, The Netherlands
| | - Nathalie Dubuis
- Research group Virology, Bacteriology and Phytoplasmology, Department of Plant protection, Agroscope, Nyon, Switzerland
| | - Raphaël Groux
- Research group Virology, Bacteriology and Phytoplasmology, Department of Plant protection, Agroscope, Nyon, Switzerland
| | - John R Pannell
- Department of Ecology and Evolution, University of Lausanne (UNIL), Switzerland
| | - Arnaud G Blouin
- Research group Virology, Bacteriology and Phytoplasmology, Department of Plant protection, Agroscope, Nyon, Switzerland
| | - Olivier Schumpp
- Research group Virology, Bacteriology and Phytoplasmology, Department of Plant protection, Agroscope, Nyon, Switzerland.
| |
Collapse
|
3
|
Morgan SW, Read DA, Burger JT, Pietersen G. Diversity of viroids infecting grapevines in the South African Vitis germplasm collection. Virus Genes 2023; 59:244-253. [PMID: 36745286 DOI: 10.1007/s11262-023-01971-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 01/24/2023] [Indexed: 02/07/2023]
Abstract
Seven viroid species and one putative viroid species have been reported to infect grapevine namely, hop stunt viroid (HSVd), grapevine yellow speckle viroid 1 (GYSVd-1), grapevine yellow speckle viroid 2 (GYSVd-2), Australian grapevine viroid (AGVd), Japanese grapevine viroid (JGVd), grapevine latent viroid (GLVd), and citrus exocortis viroid (CEVd), as well as a grapevine hammerhead viroid-like RNA (GHVd), so far. In this study, RNA sequence (RNA-Seq) data, from 229 Vitis accessions from the field-maintained vineyard of the South African Vitis germplasm collection, were analysed to determine the diversity of the viroids present. Five of the seven known grapevine-infecting viroids and one putative grapevine-infecting viroid species were very commonly found, with 214 of the 229 samples containing at least one viroid species. HSVd, GYSVd-1, GYSVd-2, AGVd, and JGVd, as well as GHVd, were identified in the RNA-Seq data of the samples and confirmed using RT-PCR and Sanger sequencing. The HSVd sequences indicated the presence of two variants, with one showing multiple nucleotide insertions. AGVd and GYSVd-2 did not display significant sequence diversity, confirming past international studies. GYSVd-1 occurs as four major variants worldwide and representatives of all four variants were identified in this vineyard. This is the first report on the diversity of viroids infecting grapevine in South Africa and the first report of JGVd outside of Japan and GHVd in South Africa. Further studies are needed to fully assess the population and to identify potentially new viroid species.
Collapse
Affiliation(s)
- Seamus W Morgan
- Department of Genetics, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - David A Read
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
- Agricultural Research Council-Biotechnology Platform, Onderstepoort, Pretoria, 0110, South Africa
| | - Johan T Burger
- Department of Genetics, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Gerhard Pietersen
- Department of Genetics, Stellenbosch University, Stellenbosch, 7600, South Africa.
| |
Collapse
|
4
|
Shvets D, Sandomirsky K, Porotikova E, Vinogradova S. Metagenomic Analysis of Ampelographic Collections of Dagestan Revealed the Presence of Two Novel Grapevine Viruses. Viruses 2022; 14:2623. [PMID: 36560627 PMCID: PMC9781968 DOI: 10.3390/v14122623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
In this study, we analyzed the virome of 73 grape samples from two Dagestan ampelographic collections in Russia using high-throughput sequencing of total RNAs. Fourteen viruses and four viroids were identified, with one to eleven of them detected in each plant. For the first time in Russia, we identified grapevine leafroll-associated virus 7 and grapevine Kizil Sapak virus. A total of 206 genomes of viruses and viroids were obtained, and their phylogenetic analysis was carried out. The de novo assembly and tblastx analysis allowed us to obtain contigs of a novel (+) ssRNA genome of a plant virus from the genus Umbravirus, which was tentatively named grapevine umbra-like virus (GULV), as well as contigs of a novel dsDNA pararetrovirus from the genus Caulimovirus, which was tentatively named grapevine pararetrovirus (GPRV). Complete genomes of these viruses were obtained and used for Sequence Demarcation Tool (SDT) analysis and phylogeny studies. GULV and GPRV were detected in 16 and 33 germplasm samples from the Dagestan collections, respectively.
Collapse
Affiliation(s)
| | | | | | - Svetlana Vinogradova
- Skryabin Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect, 33, Build. 2, 119071 Moscow, Russia
| |
Collapse
|
5
|
Navrotskaya E, Porotikova E, Yurchenko E, Galbacs ZN, Varallyay E, Vinogradova S. High-Throughput Sequencing of Small RNAs for Diagnostics of Grapevine Viruses and Viroids in Russia. Viruses 2021; 13:2432. [PMID: 34960701 PMCID: PMC8709451 DOI: 10.3390/v13122432] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
The use of high-throughput sequencing (HTS) technology has led to significant progress in the identification of many viruses and their genetic variants. In this study, we used the HTS platform to sequence small RNAs (sRNAs) of grapevine to study the virome. Isolation of RNA was performed using symptomatic grapevines collected from commercial vineyards in Krasnodar Krai in 2017-2018. To determine the viromes of vineyards, we used an integrated approach that included a bioinformatic analysis of the results of sRNA HTS and the molecular method RT-PCR, which made it possible to identify 13 viruses and 4 viroids. Grapevine leafroll-associated virus 4 (GLRaV-4), Grapevine Syrah Virus-1 (GSyV-1), Raspberry bushy dwarf virus (RBDV), Australian grapevine viroid (AGVd), and Grapevine yellow speckle viroid 2 (GYSVd-2) were identified for the first time in Russia. Out of 38 samples analyzed, 37 had mixed infections with 4-11 viruses, indicating a high viral load. Analysis of the obtained sequences of fragments of virus genomes made it possible to identify recombination events in GLRaV-1, GLRaV-2, GLRaV-3, GLRaV-4, GVT, GPGV, GRSPaV, GVA, and GFLV. The obtained results indicate a wide spread of the viruses and a high genetic diversity in the vineyards of Krasnodar Krai and emphasize the urgent need to develop and implement long-term strategies for the control of viral grapevine diseases.
Collapse
Affiliation(s)
- Emiliya Navrotskaya
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia; (E.N.); (E.P.)
| | - Elena Porotikova
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia; (E.N.); (E.P.)
| | - Eugeniya Yurchenko
- Federal State Budgetary Scientific Institution ‘North Caucasian Federal Scientific Horticulture and Viticulture Center’, Protection and Plant Biotechnology Scientific Center, Head, 40 Years of Victory Street 39, 350072 Krasnodar, Russia;
| | - Zsuzsanna Nagyne Galbacs
- Genomics Research Group, Department of Plant Pathology, Institute of Plant Protection, Hungarian University of Agriculture and Life Sciences, Szent-Gyorgyi Albert Street 4, H-2100 Godollo, Hungary; (Z.N.G.); (E.V.)
| | - Eva Varallyay
- Genomics Research Group, Department of Plant Pathology, Institute of Plant Protection, Hungarian University of Agriculture and Life Sciences, Szent-Gyorgyi Albert Street 4, H-2100 Godollo, Hungary; (Z.N.G.); (E.V.)
| | - Svetlana Vinogradova
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia; (E.N.); (E.P.)
| |
Collapse
|
6
|
What has been happening with viroids? Virus Genes 2014; 49:175-84. [DOI: 10.1007/s11262-014-1110-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 08/18/2014] [Indexed: 12/18/2022]
|
7
|
Jiang D, Sano T, Tsuji M, Araki H, Sagawa K, Purushothama CRA, Zhang Z, Guo R, Xie L, Wu Z, Wang H, Li S. Comprehensive diversity analysis of viroids infecting grapevine in China and Japan. Virus Res 2012; 169:237-45. [PMID: 22940569 DOI: 10.1016/j.virusres.2012.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 08/08/2012] [Accepted: 08/10/2012] [Indexed: 10/28/2022]
Abstract
To date, several viroid species have been shown to infect grapevine, including Hop stunt viroid (HpSVd), Citrus exocortis viroid (CEVd), Australian grapevine viroid (AGVd), Grapevine yellow speckle viroid-1 (GYSVd-1), Grapevine yellow speckle viroid-2 (GYSVd-2) and a tentative new species, Grapevine yellow speckle viroid-3 (GYSVd-3). Here, we identified and analyzed the distribution, genetic diversity, and molecular properties of viroids infecting grapevine cultivated in China and Japan, including old grapevines. The analysis showed that all the five known viroids and a tentative species GYSVd-3 infecting grapevine exist in China, and three of them (HpSVd, GYSVd-1 and GYSVd-3) exist in Japan. The contrast in diversity of viroid species in old grapevines from China and Japan may reflect different history of viticulture between the two countries. In general, the species of viroids infecting grapevine in China, as well as those in Iran and Australia, were more diverse than in the other countries. The population structure of viroids infecting grapevine in China and Japan showed species-dependency; i.e., HpSVd shared similar population structures in both countries, but GYSVd-1, GYSVd-2, and AGVd showed regional disparity even within the same country, although the role of sequence diversity in the biology of viroids infecting grapevine, such as the pathogenicity and evolution, still needs further study.
Collapse
Affiliation(s)
- Dongmei Jiang
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Hajizadeh M, Navarro B, Bashir NS, Torchetti EM, Di Serio F. Development and validation of a multiplex RT-PCR method for the simultaneous detection of five grapevine viroids. J Virol Methods 2011; 179:62-9. [PMID: 22004912 DOI: 10.1016/j.jviromet.2011.09.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 09/23/2011] [Accepted: 09/28/2011] [Indexed: 11/17/2022]
Abstract
Grapevine yellow speckle viroid 1 (GYSVd-1), Grapevine yellow speckle viroid 2 (GYSVd-2), Australian grapevine viroid (AGVd), Hop stunt viroid (HSVd) and Citrus exocortis viroid (CEVd) are the five viroids known to infect naturally grapevines. We developed a multiplex RT-PCR (mRT-PCR) method for the simultaneous detection of these five viroids and the amplification of the cDNA fragment of a host-derived mRNA (actin mRNA) as an internal positive control. Specific primers for each targeted viroid were designed by taking into account the sequence variability within and between the viroid species and tested in silico. The method was validated by testing 57 grapevine samples from Iran and showed reliability and high sensitivity. The RT-PCR-negative samples were further assayed by Northern-blot hybridization. For this, a method was developed for the simultaneous detection of three different grapevine viroids on a single hybridization membrane. In this survey, HSVd, GYSVd-1, AGVd, and GYSVd-2 were detected in 100, 95, 93, and 65% of the samples tested, respectively, confirming the wide distribution of these viroids in Iran. CEVd was not detected in any of the samples collected. Based on these results, HSVd is proposed as a positive internal control for mRT-PCR in the areas where this viroid is widespread, so as to reduce the time and costs of DNase treatment, which is required when a host-derived internal control is used. The mRT-PCR method has the potential to be used routinely for large-scale surveys and certification programs.
Collapse
Affiliation(s)
- Mohammad Hajizadeh
- Plant Protection Department, University of Tabriz, 29 Bahman, 51664 Tabriz, Iran
| | | | | | | | | |
Collapse
|
9
|
Jiang D, Guo R, Wu Z, Wang H, Li S. Molecular characterization of a member of a new species of grapevine viroid. Arch Virol 2009; 154:1563-6. [PMID: 19680745 DOI: 10.1007/s00705-009-0454-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 06/30/2009] [Indexed: 11/30/2022]
Affiliation(s)
- Dongmei Jiang
- Institute of Plant Virology, Fujian Agriculture and Forestry University, Jinshan, 350002, Fuzhou, Fujian, People's Republic of China
| | | | | | | | | |
Collapse
|