1
|
Becerra A, Muñoz-Velasco I, Aguilar-Cámara A, Cottom-Salas W, Cruz-González A, Vázquez-Salazar A, Hernández-Morales R, Jácome R, Campillo-Balderas JA, Lazcano A. Two short low complexity regions (LCRs) are hallmark sequences of the Delta SARS-CoV-2 variant spike protein. Sci Rep 2022; 12:936. [PMID: 35042962 PMCID: PMC8766472 DOI: 10.1038/s41598-022-04976-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/04/2022] [Indexed: 11/24/2022] Open
Abstract
Low complexity regions (LCRs) are protein sequences formed by a set of compositionally biased residues. LCRs are extremely abundant in cellular proteins and have also been reported in viruses, where they may partake in evasion of the host immune system. Analyses of 28,231 SARS-CoV-2 whole proteomes and of 261,051 spike protein sequences revealed the presence of four extremely conserved LCRs in the spike protein of several SARS-CoV-2 variants. With the exception of Iota, where it is absent, the Spike LCR-1 is present in the signal peptide of 80.57% of the Delta variant sequences, and in other variants of concern and interest. The Spike LCR-2 is highly prevalent (79.87%) in Iota. Two distinctive LCRs are present in the Delta spike protein. The Delta Spike LCR-3 is present in 99.19% of the analyzed sequences, and the Delta Spike LCR-4 in 98.3% of the same set of proteins. These two LCRs are located in the furin cleavage site and HR1 domain, respectively, and may be considered hallmark traits of the Delta variant. The presence of the medically-important point mutations P681R and D950N in these LCRs, combined with the ubiquity of these regions in the highly contagious Delta variant opens the possibility that they may play a role in its rapid spread.
Collapse
Affiliation(s)
- Arturo Becerra
- Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Israel Muñoz-Velasco
- Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | | | - Wolfgang Cottom-Salas
- Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
- Escuela Nacional Preparatoria, Plantel 8 Miguel E. Schulz, Universidad Nacional Autónoma de México, 01600, Mexico City, Mexico
| | - Adrián Cruz-González
- Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Alberto Vázquez-Salazar
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095, USA
| | | | - Rodrigo Jácome
- Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | | | - Antonio Lazcano
- Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico.
- El Colegio Nacional, 06470, Mexico City, Mexico.
| |
Collapse
|
2
|
Jain A, Sharma PC. Occurrence and distribution of compound microsatellites in the genomes of three economically important virus families. INFECTION GENETICS AND EVOLUTION 2021; 92:104853. [PMID: 33839312 DOI: 10.1016/j.meegid.2021.104853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/01/2021] [Accepted: 04/04/2021] [Indexed: 11/15/2022]
Abstract
Microsatellites are nonrandom hypervariable iterations of one to six nucleotides, existing across the coding as well as noncoding regions of virtually all known genomes, arising primarily due to polymerase slippage and unequal crossing over during replication events. Two or more perfect microsatellites located in close proximity form compound microsatellites. We studied the distribution of compound microsatellites in 118 ssDNA virus genomes belonging to three economically important virus families, namely Anelloviridae, Circoviridae, and Parvoviridae, known to predominantly infect livestock and humans. Among these virus families, 0-58.49% of perfect microsatellites were involved in the formation of compound microsatellites, the majority being located in the coding regions. No clear relationship existed between the genomic features (genome size and GC%) and compound microsatellite characteristics (relative abundance and relative density). The majority of the compound microsatellites resulted from di-SSR couples. A strong positive relationship was observed between the maximum distance value and length of compound microsatellite, percentage of microsatellites involved in the compound microsatellite formation, and relative microsatellite density. The degree of variability among microsatellite characteristics studied was largely a species-specific phenomenon. A major proportion of compound microsatellites was represented by similar motif combinations. The findings of the present study will help in better understanding of the structural, functional, and evolutionary role of compound microsatellites prevailing in the smaller genomes.
Collapse
Affiliation(s)
- Ankit Jain
- Merck Life Science Pvt. Ltd, Sector-17, Chandigarh, India
| | - Prakash C Sharma
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka Sector-16 C, New Delhi 11078, India.
| |
Collapse
|
3
|
Genome-wide in silico identification and characterization of Simple Sequence Repeats in diverse completed SARS-CoV-2 genomes. GENE REPORTS 2021; 23:101020. [PMID: 33521382 PMCID: PMC7835092 DOI: 10.1016/j.genrep.2021.101020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/06/2020] [Accepted: 12/29/2020] [Indexed: 12/19/2022]
Abstract
Simple sequence repeats (SSRs) or, Microsatellites are short repeat sequences that have been extensively studied in eukaryotic (plants) and prokaryotic (bacteria) organisms. Compared to other organisms, the presence and incidence of SSR on viral genomes are less studied. With the emergence of novel infectious viruses over the past few decades, it is imperative to study the genetic diversity in such viruses to predict their evolutionary and functional changes over time. Following the emergence of SARS-CoV-2, we have assembled 121 complete genomes reported from 31 countries across the six continents for the identification and characterization of SSR repeats. Using two independent SSR identification tools, we have found remarkable consistency in the diversity of microsatellites pattern (38–42 per genome) found in the 121 analyzed SARS-CoV-2 genomes indication their important role for genome stability. Among the identified motifs, trinucleotide and hexanucleotide repeats were found to be the most abundant form followed by mono- and di-nucleotide. There were no tetra- or penta-nucleotide repeats in the analyzed SARS-CoV-2 genomes. The discovery of microsatellites in SARS-CoV-2 genomes may become useful for the population genetics, evolutionary analysis, strain identification and genetic variation.
Collapse
|
4
|
Comparative analysis, distribution, and characterization of microsatellites in Orf virus genome. Sci Rep 2020; 10:13852. [PMID: 32807836 PMCID: PMC7431841 DOI: 10.1038/s41598-020-70634-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/01/2020] [Indexed: 11/09/2022] Open
Abstract
Genome-wide in-silico identification of microsatellites or simple sequence repeats (SSRs) in the Orf virus (ORFV), the causative agent of contagious ecthyma has been carried out to investigate the type, distribution and its potential role in the genome evolution. We have investigated eleven ORFV strains, which resulted in the presence of 1,036-1,181 microsatellites per strain. The further screening revealed the presence of 83-107 compound SSRs (cSSRs) per genome. Our analysis indicates the dinucleotide (76.9%) repeats to be the most abundant, followed by trinucleotide (17.7%), mononucleotide (4.9%), tetranucleotide (0.4%) and hexanucleotide (0.2%) repeats. The Relative Abundance (RA) and Relative Density (RD) of these SSRs varied between 7.6-8.4 and 53.0-59.5 bp/kb, respectively. While in the case of cSSRs, the RA and RD ranged from 0.6-0.8 and 12.1-17.0 bp/kb, respectively. Regression analysis of all parameters like the incident of SSRs, RA, and RD significantly correlated with the GC content. But in a case of genome size, except incident SSRs, all other parameters were non-significantly correlated. Nearly all cSSRs were composed of two microsatellites, which showed no biasedness to a particular motif. Motif duplication pattern, such as, (C)-x-(C), (TG)-x-(TG), (AT)-x-(AT), (TC)- x-(TC) and self-complementary motifs, such as (GC)-x-(CG), (TC)-x-(AG), (GT)-x-(CA) and (TC)-x-(AG) were observed in the cSSRs. Finally, in-silico polymorphism was assessed, followed by in-vitro validation using PCR analysis and sequencing. The thirteen polymorphic SSR markers developed in this study were further characterized by mapping with the sequence present in the database. The results of the present study indicate that these SSRs could be a useful tool for identification, analysis of genetic diversity, and understanding the evolutionary status of the virus.
Collapse
|
5
|
Zhang H, Li D, Zhao X, Pan S, Wu X, Peng S, Huang H, Shi R, Tan Z. Relatively semi-conservative replication and a folded slippage model for short tandem repeats. BMC Genomics 2020; 21:563. [PMID: 32807079 PMCID: PMC7430839 DOI: 10.1186/s12864-020-06949-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022] Open
Abstract
Background The ubiquitous presence of short tandem repeats (STRs) in virtually all genomes implicates their functional relevance, while a widely-accepted definition of STR is yet to be established. Previous studies majorly focus on relatively longer STRs, while shorter repeats were generally excluded. Herein, we have adopted a more generous criteria to define shorter repeats, which has led to the definition of a much larger number of STRs that lack prior analysis. Using this definition, we analyzed the short repeats in 55 randomly selected segments in 55 randomly selected genomic sequences from a fairly wide range of species covering animals, plants, fungi, protozoa, bacteria, archaea and viruses. Results Our analysis reveals a high percentage of short repeats in all 55 randomly selected segments, indicating that the universal presence of high-content short repeats could be a common characteristic of genomes across all biological kingdoms. Therefore, it is reasonable to assume a mechanism for continuous production of repeats that can make the replicating process relatively semi-conservative. We have proposed a folded replication slippage model that considers the geometric space of nucleotides and hydrogen bond stability to explain the mechanism more explicitly, with improving the existing straight-line slippage model. The folded slippage model can explain the expansion and contraction of mono- to hexa- nucleotide repeats with proper folding angles. Analysis of external forces in the folding template strands also suggests that expansion exists more commonly than contraction in the short tandem repeats. Conclusion The folded replication slippage model provides a reasonable explanation for the continuous occurrences of simple sequence repeats in genomes. This model also contributes to the explanation of STR-to-genome evolution and is an alternative model that complements semi-conservative replication.
Collapse
Affiliation(s)
- Hongxi Zhang
- Bioinformatics Center, College of Biology, Hunan University, Changsha, 410082, China
| | - Douyue Li
- Bioinformatics Center, College of Biology, Hunan University, Changsha, 410082, China
| | - Xiangyan Zhao
- Bioinformatics Center, College of Biology, Hunan University, Changsha, 410082, China
| | - Saichao Pan
- Bioinformatics Center, College of Biology, Hunan University, Changsha, 410082, China
| | - Xiaolong Wu
- Bioinformatics Center, College of Biology, Hunan University, Changsha, 410082, China
| | - Shan Peng
- Bioinformatics Center, College of Biology, Hunan University, Changsha, 410082, China
| | - Hanrou Huang
- Bioinformatics Center, College of Biology, Hunan University, Changsha, 410082, China
| | - Ruixue Shi
- Bioinformatics Center, College of Biology, Hunan University, Changsha, 410082, China
| | - Zhongyang Tan
- Bioinformatics Center, College of Biology, Hunan University, Changsha, 410082, China.
| |
Collapse
|
6
|
Alam CM, Iqbal A, Sharma A, Schulman AH, Ali S. Microsatellite Diversity, Complexity, and Host Range of Mycobacteriophage Genomes of the Siphoviridae Family. Front Genet 2019; 10:207. [PMID: 30923537 PMCID: PMC6426759 DOI: 10.3389/fgene.2019.00207] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 02/26/2019] [Indexed: 01/21/2023] Open
Abstract
The incidence, distribution, and variation of simple sequence repeats (SSRs) in viruses is instrumental in understanding the functional and evolutionary aspects of repeat sequences. Full-length genome sequences retrieved from NCBI were used for extraction and analysis of repeat sequences using IMEx software. We have also developed two MATLAB-based tools for extraction of gene locations from GenBank in tabular format and simulation of this data with SSR incidence data. Present study encompassing 147 Mycobacteriophage genomes revealed 25,284 SSRs and 1,127 compound SSRs (cSSRs) through IMEx. Mono- to hexa-nucleotide motifs were present. The SSR count per genome ranged from 78 (M100) to 342 (M58) while cSSRs incidence ranged from 1 (M138) to 17 (M28, M73). Though cSSRs were present in all the genomes, their frequency and SSR to cSSR conversion percentage varied from 1.08 (M138 with 93 SSRs) to 8.33 (M116 with 96 SSRs). In terms of localization, the SSRs were predominantly localized to coding regions (∼78%). Interestingly, genomes of around 50 kb contained a similar number of SSRs/cSSRs to that in a 110 kb genome, suggesting functional relevance for SSRs which was substantiated by variation in motif constitution between species with different host range. The three species with broad host range (M97, M100, M116) have around 90% of their mono-nucleotide repeat motifs composed of G or C and only M16 has both A and T mononucleotide motifs. Around 20% of the di-nucleotide repeat motifs in the genomes exhibiting a broad host range were CT/TC, which were either absent or represented to a much lesser extent in the other genomes.
Collapse
Affiliation(s)
- Chaudhary Mashhood Alam
- Luke/BI Plant Genome Dynamics Lab, Institute of Biotechnology and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.,Ingenious e-Brain Solutions, Gurugram, India
| | - Asif Iqbal
- PIRO Technologies Private Limited, New Delhi, India
| | - Anjana Sharma
- Department of Biomedical Sciences, SRCASW, University of Delhi, New Delhi, India
| | - Alan H Schulman
- Luke/BI Plant Genome Dynamics Lab, Institute of Biotechnology and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.,Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Safdar Ali
- Department of Biomedical Sciences, SRCASW, University of Delhi, New Delhi, India.,Department of Biological Sciences, Aliah University, Kolkata, India
| |
Collapse
|
7
|
Genome-wide In Silico Analysis, Characterization and Identification of Microsatellites in Spodoptera littoralis Multiple nucleopolyhedrovirus (SpliMNPV). Sci Rep 2016; 6:33741. [PMID: 27650818 PMCID: PMC5030640 DOI: 10.1038/srep33741] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 09/01/2016] [Indexed: 01/10/2023] Open
Abstract
In this study, we undertook a survey to analyze the distribution and frequency of microsatellites or Simple Sequence Repeats (SSRs) in Spodoptera littoralis multiple nucleopolyhedrovirus (SpliMNPV) genome (isolate AN-1956). Out of the 55 microsatellite motifs, identified in the SpliMNPV-AN1956 genome using in silico analysis (inclusive of mono-, di-, tri- and hexa-nucleotide repeats), 39 were found to be distributed within coding regions (cSSRs), whereas 16 were observed to lie within intergenic or noncoding regions. Among the 39 motifs located in coding regions, 21 were located in annotated functional genes whilst 18 were identified in unknown functional genes (hypothetical proteins). Among the identified motifs, trinucleotide (80%) repeats were found to be the most abundant followed by dinucleotide (13%), mononucleotide (5%) and hexanucleotide (2%) repeats. The 39 motifs located within coding regions were further validated in vitro by using PCR analysis, while the 21 motifs located within known functional genes (15 genes) were characterized using nucleotide sequencing. A comparison of the sequence analysis data of the 21 sequenced cSSRs with the published sequences is presented. Finally, the developed SSR markers of the 39 motifs were further mapped/localized onto the SpliMNPV-AN1956 genome. In conclusion, the SSR markers specific to SpliMNPV, developed in this study, could be a useful tool for the identification of isolates and analysis of genetic diversity and viral evolutionary status.
Collapse
|
8
|
GEORGE B, GEORGE B, AWASTHI M, SINGH RN. In silico genome-wide identification and analysis of microsatelliterepeats in the largest RNA virus family (Closteroviridae). Turk J Biol 2016. [DOI: 10.3906/biy-1503-11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
9
|
George B, Alam CM, Kumar RV, Gnanasekaran P, Chakraborty S. Potential linkage between compound microsatellites and recombination in geminiviruses: Evidence from comparative analysis. Virology 2015; 482:41-50. [DOI: 10.1016/j.virol.2015.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 02/16/2015] [Accepted: 03/05/2015] [Indexed: 01/10/2023]
|
10
|
George B, George B, awasthi M, Singh RN. Genome wide survey and analysis of microsatellites in Tombusviridae family. Genes Genomics 2015. [DOI: 10.1007/s13258-015-0295-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
George B, Bhatt BS, Awasthi M, George B, Singh AK. Comparative analysis of microsatellites in chloroplast genomes of lower and higher plants. Curr Genet 2015; 61:665-77. [PMID: 25999216 DOI: 10.1007/s00294-015-0495-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 05/05/2015] [Accepted: 05/08/2015] [Indexed: 12/29/2022]
Abstract
Microsatellites, or simple sequence repeats (SSRs), contain repetitive DNA sequence where tandem repeats of one to six base pairs are present number of times. Chloroplast genome sequences have been shown to possess extensive variations in the length, number and distribution of SSRs. However, a comparative analysis of chloroplast microsatellites is not available. Considering their potential importance in generating genomic diversity, we have systematically analysed the abundance and distribution of simple and compound microsatellites in 164 sequenced chloroplast genomes from wide range of plants. The key findings of these studies are (1) a large number of mononucleotide repeats as compared to SSR(2-6)(di-, tri-, tetra-, penta-, hexanucleotide repeats) are present in all chloroplast genomes investigated, (2) lower plants such as algae show wide variation in relative abundance, density and distribution of microsatellite repeats as compared to flowering plants, (3) longer SSRs are excluded from coding regions of most chloroplast genomes, (4) GC content has a weak influence on number, relative abundance and relative density of mononucleotide as well as SSR(2-6). However, GC content strongly showed negative correlation with relative density (R (2) = 0.5, P < 0.05) and relative abundance (R (2) = 0.6, P < 0.05) of cSSRs. In summary, our comparative studies of chloroplast genomes illustrate the variable distribution of microsatellites and revealed that chloroplast genome of smaller plants possesses relatively more genomic diversity compared to higher plants.
Collapse
Affiliation(s)
- Biju George
- Blessy Software Solution, Sector 4/441, Malviya Nagar, Jaipur, 302017, Rajasthan, India.
| | - Bhavin S Bhatt
- School of Life Sciences, Central University of Gujarat, Gandhinagar, 382030, Gujarat, India
| | - Mayur Awasthi
- Mahatma Gandhi Chitrakoot Gramodaya Vishwavidhyalaya, Satna, 485334, Madhya Pradesh, India
| | - Binu George
- Blessy Software Solution, Sector 4/441, Malviya Nagar, Jaipur, 302017, Rajasthan, India
| | - Achuit K Singh
- School of Life Sciences, Central University of Gujarat, Gandhinagar, 382030, Gujarat, India.
| |
Collapse
|
12
|
Hatcher EL, Wang C, Lefkowitz EJ. Genome variability and gene content in chordopoxviruses: dependence on microsatellites. Viruses 2015; 7:2126-46. [PMID: 25912716 PMCID: PMC4411693 DOI: 10.3390/v7042126] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 03/24/2015] [Accepted: 04/17/2015] [Indexed: 11/20/2022] Open
Abstract
To investigate gene loss in poxviruses belonging to the Chordopoxvirinae subfamily, we assessed the gene content of representative members of the subfamily, and determined whether individual genes present in each genome were intact, truncated, or fragmented. When nonintact genes were identified, the early stop mutations (ESMs) leading to gene truncation or fragmentation were analyzed. Of all the ESMs present in these poxvirus genomes, over 65% co-localized with microsatellites—simple sequence nucleotide repeats. On average, microsatellites comprise 24% of the nucleotide sequence of these poxvirus genomes. These simple repeats have been shown to exhibit high rates of variation, and represent a target for poxvirus protein variation, gene truncation, and reductive evolution.
Collapse
Affiliation(s)
- Eneida L Hatcher
- Department of Microbiology, University of Alabama at Birmingham, BBRB 276/11, 845 19th St S, Birmingham, AL 35222, USA.
| | - Chunlin Wang
- Stanford Genome Technology Center, Stanford University, 855 California Ave, Palo Alto, CA 94304, USA.
| | - Elliot J Lefkowitz
- Department of Microbiology, University of Alabama at Birmingham, BBRB 276/11, 845 19th St S, Birmingham, AL 35222, USA.
| |
Collapse
|
13
|
Genome wide survey of microsatellites in ssDNA viruses infecting vertebrates. Gene 2014; 552:209-18. [DOI: 10.1016/j.gene.2014.09.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 08/15/2014] [Accepted: 09/15/2014] [Indexed: 01/26/2023]
|
14
|
George B, Gnanasekaran P, Jain SK, Chakraborty S. Genome wide survey and analysis of small repetitive sequences in caulimoviruses. INFECTION GENETICS AND EVOLUTION 2014; 27:15-24. [PMID: 24999243 DOI: 10.1016/j.meegid.2014.06.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 06/01/2014] [Accepted: 06/22/2014] [Indexed: 12/19/2022]
Abstract
Microsatellites are known to exhibit ubiquitous presence across all kingdoms of life including viruses. Members of the Caulimoviridae family severely affect growth of vegetable and fruit plants and reduce economic yield in diverse cropping systems worldwide. Here, we analyzed the nature and distribution of both simple and complex microsatellites present in complete genome of 44 species of Caulimoviridae. Our results showed, in all analyzed genomes, genome size and GC content had a weak influence on number, relative abundance and relative density of microsatellites, respectively. For each genome, mono- and dinucleotide repeats were found to be highly predominant and are overrepresented in genome of majority of caulimoviruses. AT/TA and GAA/AAG/AGA was the most abundant di- and trinucleotide repeat motif, respectively. Repeats larger than trinucleotide were rarely found in these genomes. Comparative study of occurrence, abundance and density of microsatellite among available RNA and DNA viral genomes indicated that simple repeats were least abundant in genomes of caulimoviruses. Polymorphic repeats even though rare were observed in the large intergenic region of the genome, indicating strand slippage and/or unequal recombination processes do occur in caulimoviruses. To our knowledge, this is the first analysis of microsatellites occurring in any dsDNA viral genome. Characterization of such variations in repeat sequences would be important in deciphering the origin, mutational processes, and role of repeat sequences in viral genomes.
Collapse
Affiliation(s)
- Biju George
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Prabu Gnanasekaran
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - S K Jain
- Department of Biotechnology, Jamia Hamdard University, New Delhi, Delhi 110062, India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
15
|
Alam CM, Singh AK, Sharfuddin C, Ali S. Incidence, complexity and diversity of simple sequence repeats across potexvirus genomes. Gene 2014; 537:189-96. [DOI: 10.1016/j.gene.2014.01.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/15/2013] [Accepted: 01/04/2014] [Indexed: 01/18/2023]
|
16
|
Genome-wide scan for analysis of simple and imperfect microsatellites in diverse carlaviruses. INFECTION GENETICS AND EVOLUTION 2014; 21:287-94. [DOI: 10.1016/j.meegid.2013.11.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 11/15/2013] [Accepted: 11/21/2013] [Indexed: 01/08/2023]
|
17
|
In-silico analysis of simple and imperfect microsatellites in diverse tobamovirus genomes. Gene 2013; 530:193-200. [DOI: 10.1016/j.gene.2013.08.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/10/2013] [Accepted: 08/13/2013] [Indexed: 11/20/2022]
|
18
|
Alam CM, George B, Sharfuddin C, Jain S, Chakraborty S. Occurrence and analysis of imperfect microsatellites in diverse potyvirus genomes. Gene 2013; 521:238-44. [DOI: 10.1016/j.gene.2013.02.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 02/14/2013] [Accepted: 02/19/2013] [Indexed: 12/30/2022]
|