1
|
Krivitskaya V, Petrova E, Sorokin E, Tsareva T, Sverlova M, Komissarova K, Sominina A, Danilenko D. Characterization of a Panel of Monoclonal Antibodies Targeting the F-Protein of the Respiratory Syncytial Virus (RSV) for the Typing of Contemporary Circulating Strains. Trop Med Infect Dis 2023; 9:1. [PMID: 38276631 PMCID: PMC10819491 DOI: 10.3390/tropicalmed9010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 01/27/2024] Open
Abstract
Respiratory syncytial virus (RSV) is the most common cause of upper and lower respiratory tract infections in infants and young children. Virus-specific monoclonal antibodies (mAbs) can be used for diagnosis, prophylaxis, and research of RSV pathogenesis. A panel of 16 anti-RSV mAbs was obtained from mice immunized by RSV strain Long. Half of them had virus-neutralizing activity. According to Western blot all of these mAbs effectively bound native oligomeric (homodimeric and homotrimeric) forms of the RSV fusion (F) protein. Only five of the mAbs interacted with the monomeric form, and only one of these possessed neutralizing activity. None of these mAbs, nor the commercial humanized neutralizing mAb palivizumab, reacted with the denaturated F protein. Thus, interaction of all these mAbs with F protein had clear conformational dependence. Competitive ELISA and neutralization assays allowed the identification of nine antigenic target sites for the interaction of mAb with the F protein. Five partially overlapping sites may represent a complex spatial structure of one antigenic determinant, including one neutralizing and four non-neutralizing epitopes. Four sites (three neutralizing and one non-neutralizing) were found to be distinct. As a result of virus cultivation RSV-A, strain Long, in the presence of a large amount of one of the neutralizing mAbs, an escape mutant with a substitution, N240S, in the F protein, was obtained. Thus, it was shown for the first time that position 240 is critical for the protective effect of an anti-RSV antibody. To assess the ability of these mAbs to interact with modern RSV strains circulating in St. Petersburg (Russia) between 2014 and 2022, 73 RSV-A and 22 RSV-B isolates were analyzed. Six mAbs were directed to conserved epitopes of the F protein as they interacted most efficiently with both RSV subtypes in a fixed cell-ELISA and could be used for diagnostic assays detecting RSV.
Collapse
Affiliation(s)
- Vera Krivitskaya
- Smorodintsev Research Institute of Influenza, The Ministry of Health of the Russian Federation, WHO National Influenza Centre, St. Petersburg 197376, Russia; (E.P.); (E.S.); (T.T.); (M.S.); (K.K.); (A.S.); (D.D.)
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Krivitskaya VZ, Sintsova KS, Petrova ER, Sverlova MV, Sorokin EV, Tsareva TR, Komissarov AB, Fadeev AV, Pisareva MM, Buzitskaya ZV, Afanaseva VS, Sukhovetskaya VF, Sominina AA. GENETIC AND ANTIGENIC CHARACTERISTICS OF RESPIRATORY SYNCYTIAL VIRUS STRAINS ISOLATED IN ST. PETERSBURG IN 2013-2016. Vopr Virusol 2017; 62:273-282. [PMID: 36494959 DOI: 10.18821/0507-4088-2017-62-6-273-282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Indexed: 12/13/2022]
Abstract
Antigenic and genetic characteristics of Russian RSV isolates are presented for the first time. Of the 69 strains isolated in St. Petersburg, 93% belonged to the RSV-A antigenic group. The antigenic variations in the F-protein RSV were analyzed using a panel from 6 monoclonal antibodies by the method of micro-cultural ELISA. Depending on the decrease in the effectiveness of interaction with monoclonal antibodies (relative to the reference strain Long), RSV-A isolates were divided into 4 antigenic subgroups. The results of 24 isolates sequencing showed that more than 60% of them had substitutions in significant F-protein sites compared to the ON67-1210A reference strain of the current RSV genotype ON1/GA2. The most variable were the signal peptide and antigenic site II. When comparing the results of ELISA and sequencing, it was not possible to identify any specific key substitutions in the amino acid sequence of the F-protein that affect the interaction of the virus with antibodies. The nucleotide sequence of the F-gene from 19 of the 24 characterized isolates was close to that of ON67-1210A reference virus and was significantly different from RSV-A Long and A2 viruses. A separate group consisted of 5 strains, in which the F-protein structure was approximated to RSV Long.
Collapse
|
3
|
Trento A, Ábrego L, Rodriguez-Fernandez R, González-Sánchez MI, González-Martínez F, Delfraro A, Pascale JM, Arbiza J, Melero JA. Conservation of G-Protein Epitopes in Respiratory Syncytial Virus (Group A) Despite Broad Genetic Diversity: Is Antibody Selection Involved in Virus Evolution? J Virol 2015; 89:7776-85. [PMID: 25995258 PMCID: PMC4505632 DOI: 10.1128/jvi.00467-15] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/11/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Worldwide G-glycoprotein phylogeny of human respiratory syncytial virus (hRSV) group A sequences revealed diversification in major clades and genotypes over more than 50 years of recorded history. Multiple genotypes cocirculated during prolonged periods of time, but recent dominance of the GA2 genotype was noticed in several studies, and it is highlighted here with sequences from viruses circulating recently in Spain and Panama. Reactivity of group A viruses with monoclonal antibodies (MAbs) that recognize strain-variable epitopes of the G glycoprotein failed to correlate genotype diversification with antibody reactivity. Additionally, no clear correlation was found between changes in strain-variable epitopes and predicted sites of positive selection, despite both traits being associated with the C-terminal third of the G glycoprotein. Hence, our data do not lend support to the proposed antibody-driven selection of variants as a major determinant of hRSV evolution. Other alternative mechanisms are considered to account for the high degree of hRSV G-protein variability. IMPORTANCE An unusual characteristic of the G glycoprotein of human respiratory syncytial virus (hRSV) is the accumulation of nonsynonymous (N) changes at higher rates than synonymous (S) changes, reaching dN/dS values at certain sites predictive of positive selection. Since these sites cluster preferentially in the C-terminal third of the G protein, like certain epitopes recognized by murine antibodies, it was proposed that immune (antibody) selection might be driving the apparent positive selection, analogous to the antigenic drift observed in the influenza virus hemagglutinin (HA). However, careful antigenic and genetic comparison of the G glycoprotein does not provide evidence of antigenic drift in the G molecule, in agreement with recently published data which did not indicate antigenic drift in the G protein with human sera. Alternative explanations to the immune-driven selection hypothesis are offered to account for the high level of G-protein genetic diversity highlighted in this study.
Collapse
Affiliation(s)
- Alfonsina Trento
- Unidad de Biología Viral, Centro Nacional de Microbiología, Madrid, Spain CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Leyda Ábrego
- Departamento de Investigación en Virología, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panamá, Panama
| | | | | | | | - Adriana Delfraro
- Sección Virología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Juan M Pascale
- Departamento de Investigación en Virología, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panamá, Panama
| | - Juan Arbiza
- Sección Virología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - José A Melero
- Unidad de Biología Viral, Centro Nacional de Microbiología, Madrid, Spain CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
4
|
Martinelli M, Frati ER, Zappa A, Ebranati E, Bianchi S, Pariani E, Amendola A, Zehender G, Tanzi E. Phylogeny and population dynamics of respiratory syncytial virus (Rsv) A and B. Virus Res 2014; 189:293-302. [PMID: 24954788 DOI: 10.1016/j.virusres.2014.06.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/06/2014] [Accepted: 06/11/2014] [Indexed: 10/25/2022]
Abstract
Respiratory syncytial virus (RSV) is a major cause of lower respiratory tract infections in infants and young children. RSV is characterised by high variability, especially in the G glycoprotein, which may play a significant role in RSV pathogenicity by allowing immune evasion. To reconstruct the origin and phylodynamic history of RSV, we evaluated the genetic diversity and evolutionary dynamics of RSV A and RSV B isolated from children under 3 years old infected in Italy from 2006 to 2012. Phylogenetic analysis revealed that most of the RSV A sequences clustered with the NA1 genotype, and RSV B sequences were included in the Buenos Aires genotype. The mean evolutionary rates for RSV A and RSV B were estimated to be 2.1 × 10(-3) substitutions (subs)/site/year and 3.03 × 10(-3) subs/site/year, respectively. The time of most recent common ancestor for the tree root went back to the 1940s (95% highest posterior density-HPD: 1927-1951) for RSV A and the 1950s (95%HPD: 1951-1960) for RSV B. The RSV A Bayesian skyline plot (BSP) showed a decrease in transmission events ending in about 2005, when a sharp growth restored the original viral population size. RSV B BSP showed a similar trend. Site-specific selection analysis identified 10 codons under positive selection in RSV A sequences and only one site in RSV B sequences. Although RSV remains difficult to control due to its antigenic diversity, it is important to monitor changes in its coding sequences, to permit the identification of future epidemic strains and to implement vaccine and therapy strategies.
Collapse
Affiliation(s)
- Marianna Martinelli
- Department of Biomedical Sciences for Health, University of Milan, Via C. Pascal 36, 20133, Milan, Italy.
| | - Elena Rosanna Frati
- Department of Biomedical Sciences for Health, University of Milan, Via C. Pascal 36, 20133, Milan, Italy.
| | - Alessandra Zappa
- Department of Biomedical Sciences for Health, University of Milan, Via C. Pascal 36, 20133, Milan, Italy.
| | - Erika Ebranati
- "L. Sacco" Department of Biomedical and Clinical Sciences, University of Milan, Via G. B. Grassi 74, 20157 Milano, Italy.
| | - Silvia Bianchi
- Department of Biomedical Sciences for Health, University of Milan, Via C. Pascal 36, 20133, Milan, Italy.
| | - Elena Pariani
- Department of Biomedical Sciences for Health, University of Milan, Via C. Pascal 36, 20133, Milan, Italy; CIRI-IT, Department of Health Sciences, University of Genoa, Via A. Pastore 1, 16132 Genoa, Italy.
| | - Antonella Amendola
- Department of Biomedical Sciences for Health, University of Milan, Via C. Pascal 36, 20133, Milan, Italy; CIRI-IT, Department of Health Sciences, University of Genoa, Via A. Pastore 1, 16132 Genoa, Italy.
| | - Gianguglielmo Zehender
- "L. Sacco" Department of Biomedical and Clinical Sciences, University of Milan, Via G. B. Grassi 74, 20157 Milano, Italy.
| | - Elisabetta Tanzi
- Department of Biomedical Sciences for Health, University of Milan, Via C. Pascal 36, 20133, Milan, Italy; CIRI-IT, Department of Health Sciences, University of Genoa, Via A. Pastore 1, 16132 Genoa, Italy.
| |
Collapse
|