1
|
Yan J, Wang M, Li X, Fan J, Yu R, Kang M, Zhang Y, Xu J, Zhang X, Zhang S. Construction of an infectious clone for enterovirus A89 and mutagenesis analysis of viral infection and cell binding. Microbiol Spectr 2024; 12:e0333223. [PMID: 38441464 PMCID: PMC10986554 DOI: 10.1128/spectrum.03332-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/29/2024] [Indexed: 04/06/2024] Open
Abstract
Enterovirus A89 (EV-A89) is an unconventional strain belonging to the Enterovirus A species. Limited research has been conducted on EV-A89, leaving its biological and pathogenic properties unclear. Developing reverse genetic tools for EV-A89 would help to unravel its infection mechanisms and aid in the development of vaccines and anti-viral drugs. In this study, an infectious clone for EV-A89 was successfully constructed and recombinant enterovirus A89 (rEV-A89) was generated. The rEV-A89 exhibited similar characteristics such as growth curve, plaque morphology, and dsRNA expression with parental strain. Four amino acid substitutions were identified in the EV-A89 capsid, which were found to enhance viral infection. Mechanistic studies revealed that these substitutions increased the virus's cell-binding ability. Establishing reverse genetic tools for EV-A89 will significantly contribute to understanding viral infection and developing anti-viral strategies.IMPORTANCEEnterovirus A species contain many human pathogens and have been classified into conventional cluster and unconventional cluster. Most of the research focuses on various conventional members, while understanding of the life cycle and infection characteristics of unconventional viruses is still very limited. In our study, we constructed the infectious cDNA clone and single-round infectious particles for the unconventional EV-A89, allowing us to investigate the biological properties of recombinant viruses. Moreover, we identified key amino acids residues that facilitate EV-A89 infection and elucidate their roles in enhancing viral binding to host cells. The establishment of the reverse genetics system will greatly facilitate future study on the life cycle of EV-A89 and contribute to the development of prophylactic vaccines and anti-viral drugs.
Collapse
Affiliation(s)
- Jingjing Yan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Min Wang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xiaohong Li
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jun Fan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Rui Yu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Miaomiao Kang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yong Zhang
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jianqing Xu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Shuye Zhang
- Clinical Center for Biotherapy, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Lin D, Dong X, Xiao X, Xiang Z, Lei X, Wang J. Proteomic and phosphoproteomic analysis of responses to enterovirus A71 infection reveals novel targets for antiviral and viral replication. Antiviral Res 2023; 220:105761. [PMID: 37992763 DOI: 10.1016/j.antiviral.2023.105761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/06/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023]
Abstract
Hand, foot, and mouth disease (HFMD) is a common infectious disease in infants and children, especially those under five years of age. EV-A71 is a common pathogen that causes HFMD and the primary pathogen leading to severe or fatal HFMD, which is characterized by neurological complications. However, the underlying mechanisms of EV-A71 pathogenesis remain largely unknown. In this report, we used proteomic and phosphorylated proteomic methods to characterize the proteome and phosphoproteome profiles of EV-A71-infected human neuroblastoma SK-N-SH cells. More than 7744 host proteins and 10069 phosphorylation modification sites were successfully quantified. Among them, 974 proteins and 3648 phosphorylation modification sites were regulated significantly during EV-A71 infection. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis revealed that EV-A71 altered cell biological processes, including protein synthesis, RNA splicing and metabolism in SK-N-SH cells. Notably, based on the prediction of upregulated kinases during EV-A71 infection, we identified specific kinase inhibitors approved by the FDA, with ceralasertib, bosutinib, flavin mononucleotide, minocycline, pimasertib and acetylcysteine inhibiting EV-A71 infection. Finally, EV-A71 proteins were found to be phosphorylated during infection, with one site (S184 on 3D polymerase) observed to be crucial for viral replication because a S184A mutation knocked out viral replication. The results improve our understanding of the host response to EV-A71 infection of neuroblastoma cells and provide potential targets for developing anti-EV-A71 strategies.
Collapse
Affiliation(s)
- Dandan Lin
- NHC Key Laboratory of System Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, PR China
| | - Xiaojing Dong
- NHC Key Laboratory of System Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, PR China
| | - Xia Xiao
- NHC Key Laboratory of System Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, PR China
| | - Zichun Xiang
- NHC Key Laboratory of System Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, PR China; State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Xiaobo Lei
- NHC Key Laboratory of System Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, PR China; State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China.
| | - Jianwei Wang
- NHC Key Laboratory of System Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, PR China.
| |
Collapse
|
3
|
Wu J, Zhao Y, Chen Q, Chen Y, Gu J, Mao L. Enterovirus A71 Promotes Exosome Secretion by the Nonstructural Protein 3A Interacting with Rab27a. Microbiol Spectr 2023; 11:e0344622. [PMID: 36790212 PMCID: PMC10101103 DOI: 10.1128/spectrum.03446-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/27/2023] [Indexed: 02/16/2023] Open
Abstract
Exosomes are small membrane-bound vesicles which are intraluminal vesicles (ILVs) secreted to the extracellular space after multivesicular bodies (MVBs) fuse with the plasma membrane. Although it is known that exosomes play a multitude of roles during viral infection, the mechanism that regulates their secretion during viral infection is unknown. Here, we found that enterovirus A71 (EV-A71) infection increased exosome secretion both in vivo and in vitro. Importantly, the expression of nonstructural protein 3A was sufficient to promote exosome secretion, while a mutation affecting the amino acid 18 position abrogated this effect, without changing the size of exosomes in vivo or in vitro. Transmission electron microscopy (TEM) analysis revealed that 3A decreases the number of MVBs and ILVs in vivo and in vitro, which suggested 3A may boost the fusion between MVBs and the plasma membrane. Furthermore, we demonstrated that an interaction between 3A and the small GTPase protein, Rab27a, protected Rab27a from ubiquitination, resulted in increasing exosome release. Data indicated a novel mechanism by which EV-A71 3A modifies exosome secretion during viral infection. IMPORTANCE Research has shown that viral infection impacts exosome secretion, but its regulation mechanisms remain poorly understood. Nonstructural protein 3A of EV-A71 interacts with many host factors and is involved in the remodeling of cellular membranes. In this investigation, we applied exogenous expression of 3A protein for exploring its regulation on exosome secretion and utilized immunoprecipitation combined with proteomics approaches to identify 3A-interacting factors. Our results demonstrate that 3A protein upregulates the release of the exosomes and that the 3A mutant strain of EV-A71 induce less exosome release compared with the EV-A71 wild type. Viral 3A protein interacts with the host factor Rab27a to prevent it from being ubiquitinated, which in turn improves exosome secretion both in vitro and in vivo. EV-A71 3A protein is a novel viral factor in the control of exosome production.
Collapse
Affiliation(s)
- Jing Wu
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Yuxue Zhao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Qiaoqiao Chen
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Yiwen Chen
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Jiaqi Gu
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Lingxiang Mao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| |
Collapse
|
4
|
Fang CY, Liu CC. Novel strategies for the development of hand, foot, and mouth disease vaccines and antiviral therapies. Expert Opin Drug Discov 2022; 17:27-39. [PMID: 34382876 DOI: 10.1080/17460441.2021.1965987] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/05/2021] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Hand, foot, and mouth disease (HFMD) poses a great threat to young children in the Asia-Pacific region. HFMD is usually caused by enterovirus A, and infection with enterovirus A71 (EV-A71) is particularly associated with severe complications. However, coxsackievirus CV-A16, CV-A6, and CV-A10 pandemics have been observed in recent HFMD outbreaks. Inactivated monovalent EV-A71 vaccines are available to prevent EV-A71 infection; however, they cannot prevent infections by non-EV-A71 enteroviruses. Anti-enteroviral drugs are still in the developmental stage. Application of novel strategies will facilitate the development of new therapies against these emerging HFMD-associated enteroviruses. AREAS COVERED The authors highlight the current approaches for anti-enterovirus therapeutic development and discuss the application of these novel strategies for the discovery of vaccines and antiviral drugs for enteroviruses. EXPERT OPINION The maturation of DNA/RNA vaccine technology could be applied for rapid and robust development of multivalent enterovirus vaccines. Structure biology and neutralization antibody studies decipher the immunodominant sites of enteroviruses for vaccine design. Nucleotide aptamer library screening is a novel, fast, and cost-effective strategy for the development of antiviral agents. Animal models carrying viral receptors and attachment factors are required for enterovirus study and vaccine/antiviral development. Currently developed antivirals require effectiveness evaluation in clinical trials.
Collapse
Affiliation(s)
- Chih-Yeu Fang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Chia-Chyi Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| |
Collapse
|
5
|
Fu M, Bai J, Gao S, Chang Z, Zhou X, Long JE. Construction and characterization of an infectious cDNA clone of enterovirus 71: a rapid method for rescuing infectious virus based on stable cells expressing T7 polymerase. Arch Virol 2021; 166:627-632. [PMID: 33423081 DOI: 10.1007/s00705-020-04940-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/12/2020] [Indexed: 11/26/2022]
Abstract
Enterovirus 71 (EV71) is a causative agent of hand, foot and, mouth disease (HFMD) in young children. It is valuable for virologists to develop a fast method to rescue infectious virus from a viral cDNA clone. Here, we report a method for rapid rescue of infectious EV71 by using cells expressing T7 polymerase. The full-length EV71 genome was amplified in one step by long-distance PCR with a T7 promoter at the 5' end, and the T7 polymerase gene was cloned into a lentivirus vector for construction of a stable cell line expressing T7 polymerase. The infectious virus was rapidly and efficiently rescued by single transfection of cells with the infectious cDNA clone. Further experiments showed that the rescued virus had characteristics similar to those of the parental virus. This method circumvented the difficulty in performing in vitro transcription of a long linear DNA to obtain high-quality RNA. The construction of the viral cDNA clone and the fast rescue of the infectious virus will greatly benefit future investigations.
Collapse
Affiliation(s)
- Meixian Fu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jinjin Bai
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Shuang Gao
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 138 Yixueyuan R., Shanghai, 200032, China
| | - Zhangmei Chang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xin Zhou
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jian-Er Long
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 138 Yixueyuan R., Shanghai, 200032, China.
| |
Collapse
|
6
|
Liu Q, Dan H, Zhao X, Chen H, Chen Y, Zhang N, Mo Z, Liu H. Construction and characterization of an infectious cDNA clone of coxsackievirus A 10. Virol J 2019; 16:98. [PMID: 31387601 PMCID: PMC6685229 DOI: 10.1186/s12985-019-1201-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 07/18/2019] [Indexed: 01/07/2023] Open
Abstract
Background Coxsackievirus A10 (CA10) constitutes one of the four major pathogens causing hand, foot and mouth disease in infants. Infectious clones are of great importance for studying viral gene functions and pathogenic mechanism. However, there is no report on the construction of CA10 infectious clones. Methods The whole genome of CA10 derived from a clinical isolate was amplified into two fragments and ligated into a linearized plasmid vector in one step by In-Fusion Cloning. The obtained CA10 cDNA clones and plasmids encoding T7 RNA polymerase were co-transfected into 293 T cells to rescue CA10 virus. The rescued virus was identified by SDS-PAGE, Western blotting and transmission electron microscopic. One-day-old ICR mice were intracerebrally inoculated with the CA10 virus and clinical symptoms were observed. Multiple tissues of moribund mice were harvested for analysis of pathogenic changes and viral distribution by using H&E staining, real-time PCR and immunohistochemical staining. Results CA10 viruses were rescued from the constructed cDNA clone and reached a maximum titer of 108.125TCID50/mL after one generation in RD cells. The virus exhibited similar physical and chemical properties to those of the parental virus. It also showed high virulence and the ability to induce death of neonatal ICR mice. Severe necrotizing myositis, intestinal villus interstitial edema and severe alveolar shrinkage were observed in infected mice. The viral antigen and the maximum amount of viral RNA were detected in limb skeletal muscles, which suggested that the limb skeletal muscles were the most likely site of viral replication. Conclusion Infectious clones of CA10 were successfully constructed for the first time, which will facilitate the establishment of standardized neonatal mouse models infected with CA10 for the evaluation of vaccines and antiviral drugs, as well as preservation and sharing of model strains.
Collapse
Affiliation(s)
- Qiliang Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China.,College of Bio-technology, Guilin Medical University, Guilin, Guangxi, China
| | - Hanliang Dan
- College of Laboratory Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Xiaoping Zhao
- College of Laboratory Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Huoying Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Yongbei Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Ning Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Zhijing Mo
- College of Bio-technology, Guilin Medical University, Guilin, Guangxi, China.
| | - Hongbo Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China. .,Center of Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin, China.
| |
Collapse
|
7
|
A Reverse Genetics System for Cypovirus Based on a Bacmid Expressing T7 RNA Polymerase. Viruses 2019; 11:v11040314. [PMID: 30939777 PMCID: PMC6521135 DOI: 10.3390/v11040314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 12/14/2022] Open
Abstract
Dendrolimus punctatus cypovirus (DpCPV), belonging to the genus Cypovirus within the family Reoviridae, is considered the most destructive pest of pine forests worldwide. DpCPV has a genome consisting of 10 linear double-stranded RNA segments. To establish a reverse genetics system, we cloned cDNAs encoding the 10 genomic segments of DpCPV into three reverse genetics vectors in which each segment was transcribed under the control of a T7 RNA polymerase promoter and terminator tagged with a hepatitis delta virus ribozyme sequence. We also constructed a vp80-knockout Autographa californica multiple nucleopolyhedrovirus bacmid to express a T7 RNA polymerase codon-optimized for Sf9 cells. Following transfection of Sf9 cells with the three vectors and the bacmid, occlusion bodies (OBs) with the typical morphology of cypovirus polyhedra were observed by optical microscopy. The rescue system was verified by incorporation of a HindIII restriction enzyme site null mutant of the 9th genomic segment. Furthermore, when we co-transfected Sf9 cells with the reverse genetics vectors, the bacmid, and an additional vector bearing an egfp gene flanked with the 5′ and 3′ untranslated regions of the 10th genomic segment, aggregated green fluorescence co-localizing with the OBs was observed. The rescued OBs were able to infect Spodopetra exigua larvae, although their infectivity was significantly lower than that of wild-type DpCPV. This reverse genetics system for DpCPV could be used to explore viral replication and pathogenesis and to facilitate the development of novel bio-insecticides and expression systems for exogenous proteins.
Collapse
|
8
|
Pan M, Gao S, Zhou Z, Zhang K, Liu S, Wang Z, Wang T. A reverse genetics system for enterovirus D68 using human RNA polymerase I. Virus Genes 2018; 54:484-492. [PMID: 29777445 DOI: 10.1007/s11262-018-1570-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/05/2018] [Indexed: 01/15/2023]
Abstract
Human enterovirus D68 (EV-D68) is a highly contagious virus, which causes respiratory tract infections. However, no effective vaccines are currently available for controlling EV-D68 infection. Here, we developed a reverse genetics system to recover EV-D68 minireplicons and infectious EV-D68 from transfected plasmids using the RNA polymerase I (Pol I) promoter. The EV-D68 minireplicons contained the luciferase reporter gene, which flanked by the non-coding regions of the EV-D68 RNA. The luciferase signals could be detected in cells after transfection and Pol I promoter-mediated luciferase signal was significantly stronger than that mediated by the T7 promoter. Furthermore, recombinant viruses were generated by transfecting plasmids that contained the genomic RNA segments of EV-D68, under the control of Pol I promoter into 293T cells or RD cells. On plaque morphology and growth kinetics, the rescued virus and parental virus were indistinguishable. In addition, we showed that the G394C mutation disrupts the viral 5'-UTR structure and suppresses the viral cap-independent translation. This reverse genetics system for EV-D68 recovery can greatly facilitate research into EV-D68 biology. Moreover, this system could accelerate the development of EV-D68 vaccines and anti-EV-D68 drugs.
Collapse
Affiliation(s)
- Minglei Pan
- School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Shuai Gao
- School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Zhenwei Zhou
- School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Keke Zhang
- School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Sihua Liu
- School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Zhiyun Wang
- School of Environmental Science and Engineering, 92 Weijin Road, Nankai District, Tianjin, 300072, China.
| | - Tao Wang
- School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China.
| |
Collapse
|
9
|
Lei X, Xiao X, Zhang Z, Ma Y, Qi J, Wu C, Xiao Y, Zhou Z, He B, Wang J. The Golgi protein ACBD3 facilitates Enterovirus 71 replication by interacting with 3A. Sci Rep 2017; 7:44592. [PMID: 28303920 PMCID: PMC5356004 DOI: 10.1038/srep44592] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 02/09/2017] [Indexed: 12/24/2022] Open
Abstract
Enterovirus 71 (EV71) is a human pathogen that causes hand, foot, mouth disease and neurological complications. Although EV71, as well as other enteroviruses, initiates a remodeling of intracellular membrane for genomic replication, the regulatory mechanism remains elusive. By screening human cDNA library, we uncover that the Golgi resident protein acyl-coenzyme A binding domain-containing 3 (ACBD3) serves as a target of the 3A protein of EV71. This interaction occurs in cells expressing 3A or infected with EV71. Genetic inhibition or deletion of ACBD3 drastically impairs viral RNA replication and plaque formation. Such defects are corrected upon restoration of ACBD3. In infected cells, EV71 3A redirects ACBD3, to the replication sites. I44A or H54Y substitution in 3A interrupts the binding to ACBD3. As such, viral replication is impeded. These results reveal a mechanism of EV71 replication that involves host ACBD3 for viral replication.
Collapse
Affiliation(s)
- Xiaobo Lei
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing P.R. China
| | - Xia Xiao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing P.R. China
| | - Zhenzhen Zhang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing P.R. China
| | - Yijie Ma
- Department of Microbiology and Immunology, College of Medicine, University of Illinois, Chicago, United States of America
| | - Jianli Qi
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing P.R. China
| | - Chao Wu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing P.R. China
| | - Yan Xiao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing P.R. China
| | - Zhuo Zhou
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing P.R. China
| | - Bin He
- Department of Microbiology and Immunology, College of Medicine, University of Illinois, Chicago, United States of America
| | - Jianwei Wang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing P.R. China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hanzhou 310003, Zhejiang Province, China
| |
Collapse
|
10
|
Hou W, Yang L, Li S, Yu H, Xu L, He D, Chen M, He S, Ye X, Que Y, Shih JWK, Cheng T, Xia N. Construction and characterization of an infectious cDNA clone of Echovirus 25. Virus Res 2015; 205:41-4. [PMID: 26004198 DOI: 10.1016/j.virusres.2015.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/05/2015] [Accepted: 05/12/2015] [Indexed: 12/28/2022]
Abstract
Echovirus 25 (E-25) is a member of the enterovirus family and a common pathogen that induces hand, foot, and mouth disease (HFMD), meningitis, skin rash, and respiratory illnesses. In this study, we constructed and characterized an infectious full-length E-25 cDNA clone derived from the XM0297 strain, which was the first subgenotype D6 strain isolated in Xiamen, China. The 5'-Untranslated Regions (5'-UTR), P3 (3A-3B, 3D) and P3 (3C) regions of this E-25 (XM0297) strain were highly similar to EV-B77, E-16 and E-13, respectively. Our data demonstrate that the rescued E-25 viruses exhibited similar growth kinetics to the prototype virus strain XM0297. We observed the rescued viral particles using transmission electron microscope (TEM) and found them to possess an icosahedral structure, with a diameter of approximately 30 nm. The cross neutralization test demonstrated that the E-25 (XM0297) strain immune serum could not neutralize EV-A71, CV-A16 or CV-B3; likewise, the EV-A71 and CV-A16 immune serum could not neutralize E-25 (XM0297). The availability of this infectious clone will greatly enhance future virological investigations and possible vaccine development against E-25.
Collapse
Affiliation(s)
- Wangheng Hou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen 361102, PR China
| | - Lisheng Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen 361102, PR China
| | - Shuxuan Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen 361102, PR China
| | - Hai Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen 361102, PR China
| | - Longfa Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen 361102, PR China
| | - Delei He
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen 361102, PR China
| | - Mengyuan Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen 361102, PR China
| | - Shuizhen He
- Xiamen Center for Disease Control and Prevention, Fujian, China
| | - Xiangzhong Ye
- Beijing Wantai Biological Pharmacy Enterprise Co., Ltd., Beijing 102206, PR China
| | - Yuqiong Que
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen 361102, PR China
| | - James Wai Kuo Shih
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen 361102, PR China
| | - Tong Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen 361102, PR China.
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen 361102, PR China.
| |
Collapse
|