1
|
Ruiz-García AB, Candresse T, Malagón J, Ruiz-Torres M, Paz S, Pérez-Sierra A, Olmos A. Olive Leaf Mottling Virus: A New Member of the Genus Olivavirus. PLANTS (BASEL, SWITZERLAND) 2024; 13:2290. [PMID: 39204726 PMCID: PMC11359234 DOI: 10.3390/plants13162290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Studies of the virome of olive trees with symptoms of leaf mottling by high-throughput sequencing (HTS) revealed the presence of a new virus. Full coding genome sequences of two isolates were determined and consisted of a single RNA segment of 16,516 nt and 16,489, respectively. The genomic organization contained 10 open reading frames (ORFs) from 5' to 3': ORF1a, ORF1b (RdRp), ORF2 (p22), ORF3 (p7), ORF4 (HSP70h), ORF5 (HSP90h), ORF6 (CP), ORF7 (p19), ORF8 (p12), ORF9 (p23) and ORF10 (p9). Phylogenetic analyses clustered this virus in the genus Olivavirus, family Closteroviridae, with the closest species being Olivavirus flaviolae, commonly named olive leaf yellowing-associated virus (OLYaV). However, amino acid sequences of all taxonomically relevant proteins showed, in all cases, a divergence higher than 25% between OLYaV and the new virus, indicating that it represents a new species in the genus Olivavirus for which the common name of olive leaf mottling virus (OLMV) is proposed. This study represents an advance in the genus Olivavirus and provides new insights into the olive virome.
Collapse
Affiliation(s)
- Ana Belén Ruiz-García
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra CV-315, km 10.7, 46113 Moncada, Valencia, Spain; (A.B.R.-G.); (A.P.-S.)
| | - Thierry Candresse
- UMR BFP, INRAE, University of Bordeaux, CS 20032, 33882 Villenave d’Ornon CEDEX, France;
| | - José Malagón
- Servicio de Transferencia de Tecnología (STT) de la Generalitat Valenciana, Ctra CV-315, km 10.7, 46113 Moncada, Valencia, Spain; (J.M.); (S.P.)
| | - Manuel Ruiz-Torres
- Laboratorio de Producción y Sanidad Vegetal de Jaén, Junta de Andalucía, Sierra Morena, 12b, 23620 Mengíbar, Jaén, Spain;
| | - Sergio Paz
- Servicio de Transferencia de Tecnología (STT) de la Generalitat Valenciana, Ctra CV-315, km 10.7, 46113 Moncada, Valencia, Spain; (J.M.); (S.P.)
| | - Ana Pérez-Sierra
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra CV-315, km 10.7, 46113 Moncada, Valencia, Spain; (A.B.R.-G.); (A.P.-S.)
| | - Antonio Olmos
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra CV-315, km 10.7, 46113 Moncada, Valencia, Spain; (A.B.R.-G.); (A.P.-S.)
| |
Collapse
|
2
|
Discovery of a Closterovirus Infecting Jujube Plants Grown at Aksu Area in Xinjiang of China. Viruses 2023; 15:v15020267. [PMID: 36851483 PMCID: PMC9958854 DOI: 10.3390/v15020267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/05/2023] [Accepted: 01/15/2023] [Indexed: 01/19/2023] Open
Abstract
Chinese jujube (Ziziphus jujuba Mill.) is a widely grown fruit crop at Aksu in Xinjiang Uygur Autonomous Region of China. Viral disease-like symptoms are common on jujube plants. Here, for the first time, we report a virus tentatively named persimmon ampelovirus jujube isolate (PAmpV-Ju) infecting jujube plants. The virus was identified using high-throughput sequencing from a jujube plant (ID: AKS15) and molecularly related to viruses in the family Closteroviridae. The genomic sequences of two PAmpV-Ju variants named AKS15-20 and AKS15-17 were determined by RT-PCR amplifications. The genome structure of PAmpV-Ju was identical to that of a recently reported persimmon ampelovirus (PAmpV) and consisted of seven open reading frames. The genomes of AKS15-20 and AKS15-17 shared 83.7% nt identity with each other, and the highest nt sequence identity of 79% with two variants of PAmpV. The incidence of PAmpV-Ju on Aksu jujube plants was evaluated by RT-PCR assays. The phylogenetic analysis of amplified partial sequences coding for polymerase, HSP70h, and CP revealed two phylogenetic clades represented by AKS15-20 and AKS15-17. Our study provides important evidence for understanding viruses infecting jujube plants and establishing efficient measures to prevent virus spread.
Collapse
|
3
|
Wen S, Wang G, Yang Z, Wang Y, Rao M, Lu Q, Hong N. Next-Generation Sequencing Combined With Conventional Sanger Sequencing Reveals High Molecular Diversity in Actinidia Virus 1 Populations From Kiwifruit Grown in China. Front Microbiol 2020; 11:602039. [PMID: 33391218 PMCID: PMC7774462 DOI: 10.3389/fmicb.2020.602039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/11/2020] [Indexed: 01/04/2023] Open
Abstract
Kiwifruit (Actinidia spp.) is native to China. Viral disease–like symptoms are common on kiwifruit plants. In this study, six libraries prepared from total RNA of leaf samples from 69 kiwifruit plants were subjected to next-generation sequencing (NGS). Actinidia virus 1 (AcV-1), a tentative species in the family Closteroviridae, was discovered in the six libraries. Two full-length and two near-full genome sequences of AcV-1 variants were determined by Sanger sequencing. The genome structure of these Chinese AcV-1 variants was identical to that of isolate K75 and consisted of 12 open reading frames (ORFs). Analyses of these sequences together with the NGS-derived contig sequences revealed high molecular diversity in AcV-1 populations, with the highest sequence variation occurring at ORF1a, ORF2, and ORF3, and the available variants clustered into three phylogenetic clades. For the first time, our study revealed different domain compositions in the viral ORF1a and molecular recombination events among AcV-1 variants. Specific reverse transcriptase–polymerase chain reaction assays disclosed the presence of AcV-1 in plants of four kiwifruit species and unknown Actinidia spp. in seven provinces and one city.
Collapse
Affiliation(s)
- Shaohua Wen
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of Agriculture, Wuhan, China
| | - Guoping Wang
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zuokun Yang
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yanxiang Wang
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Min Rao
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qian Lu
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ni Hong
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of Agriculture, Wuhan, China
| |
Collapse
|
4
|
Feng X, Lai RL, Gao MX, Chen WG, Wu RJ, Cheng CZ, Chen YT. Characterization and complete genome sequences of two novel variants of the family Closteroviridae from Chinese kiwifruit. PLoS One 2020; 15:e0242362. [PMID: 33227011 PMCID: PMC7682855 DOI: 10.1371/journal.pone.0242362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 11/01/2020] [Indexed: 11/18/2022] Open
Abstract
Two distinct closterovirus-like genome sequences (termed AdV-1 v1 and v2) were identified in Actinidia chinensis var. deliciosa 'Miliang-1' that had no disease symptoms using high-throughput sequencing. Using overlapping reverse transcription-polymerase chain reaction and rapid amplification of cDNA ends, the genomic sequences of AdV-1 v1 and v2 were confirmed as 17,646 and 18,578 nucleotides in length, respectively. The two complete genomes contained 9 and 15 open reading frames, respectively, coding for proteins having domains typical of Closteroviridae, such as RNA-dependent RNA polymerase (RdRp), heat shock protein 70 homolog (HSP70h) and coat protein (CP). Sequence analysis showed that the amino acid sequences of RdRp, HSP70h, and CP of the two variants exhibited high similarity (> 80%), while their genomic organization was somewhat different. This suggested that the two viral genomes identified here are variants of the family Closteroviridae in a single kiwifruit host. Furthermore, phylogenetic relationship analysis revealed that the two variants had a closer relationship with the unclassified virus Persimmon virus B (PeVB) and Actinidia virus 1 (AcV-1) than with other members of the family Closteroviridae, as did their genomic organization. It is speculated that the two variants, together with PeVB and AcV-1 belong to a new subfamily of Closteroviridae.
Collapse
Affiliation(s)
- Xin Feng
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
- Research Centre for Engineering Technology of Fujian Deciduous Fruits, Fuzhou, Fujian, China
| | - Rui-lian Lai
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Min-xia Gao
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
- Research Centre for Engineering Technology of Fujian Deciduous Fruits, Fuzhou, Fujian, China
| | - Wen-guang Chen
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Ru-jian Wu
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Chun-zhen Cheng
- Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- * E-mail: (YC); (CC)
| | - Yi-ting Chen
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
- Research Centre for Engineering Technology of Fujian Deciduous Fruits, Fuzhou, Fujian, China
- * E-mail: (YC); (CC)
| |
Collapse
|
5
|
Ruiz-García AB, Candresse T, Canales C, Morán F, Machado de Oliveira C, Bertolini E, Olmos A. Molecular Characterization of the Complete Coding Sequence of Olive Leaf Yellowing-Associated Virus. PLANTS 2020; 9:plants9101272. [PMID: 32992518 PMCID: PMC7599613 DOI: 10.3390/plants9101272] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 11/27/2022]
Abstract
Genome organization and phylogenetic relationships of olive leaf yellowing-associated virus (OLYaV) with other members of the Closteroviridae family were determined. The complete coding sequence of OLYaV was obtained by high throughput sequencing of total RNA from a 35-year-old olive tree (cv. Zarzaleña) from Brazil, showing olive leaf yellowing disease and deformations in the wood. This represents the first report of OLYaV in this country. A genomic sequence of 16,700 nt containing 11 open reading frames (ORFs) was recovered, representing the complete virus coding capacity. The knowledge of the nucleotide sequence of the genome including the gene that codes the coat protein will facilitate the development of diagnostic tests, which are limited so far to PCR-based methods targeting the HSP70h gene. Interestingly, a thaumatin-like protein (ORF2), previously reported in other unassigned viruses in the Closteroviridae family, persimmon virus B and actidinia virus 1, was identified in the OLYaV genome. Phylogenetic analysis of shared proteins (ORF1a, ORF1b, HSP70h, HSP90h and CP) with all members of the Closteroviridae family provides new insight into the taxonomic position of these three closteroviruses and suggests they could represent a new genus in the family.
Collapse
Affiliation(s)
- Ana Belén Ruiz-García
- Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113 Moncada, Spain; (A.B.R.-G.); (C.C.); (F.M.)
| | - Thierry Candresse
- University Bordeaux, INRAE, UMR 1332 Biologie du Fruit et Pathologie, Equipe de Virologie, 33882 Villenave d’Ornon, France;
| | - Celia Canales
- Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113 Moncada, Spain; (A.B.R.-G.); (C.C.); (F.M.)
| | - Félix Morán
- Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113 Moncada, Spain; (A.B.R.-G.); (C.C.); (F.M.)
| | - Carlos Machado de Oliveira
- Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91540-000, Brazil; (C.M.d.O.); (E.B.)
| | - Edson Bertolini
- Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91540-000, Brazil; (C.M.d.O.); (E.B.)
| | - Antonio Olmos
- Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113 Moncada, Spain; (A.B.R.-G.); (C.C.); (F.M.)
- Correspondence: ; Tel.: +34-963424073
| |
Collapse
|
6
|
Characterization of Actinidia virus 1, a new member of the family Closteroviridae encoding a thaumatin-like protein. Arch Virol 2017; 163:229-234. [DOI: 10.1007/s00705-017-3610-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 09/19/2017] [Indexed: 10/18/2022]
|