1
|
Li X, Wang S, Li W, Wang S, Qin X, Wang J, Fu R. Investigating pigeon circovirus infection in a pigeon farm: molecular detection, phylogenetic analysis and complete genome analysis. BMC Genomics 2024; 25:369. [PMID: 38622517 PMCID: PMC11020411 DOI: 10.1186/s12864-024-10303-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/11/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Pigeon circovirus infections in pigeons (Columba livia domestica) have been reported worldwide. Pigeons should be PiCV-free when utilized as qualified experimental animals. However, pigeons can be freely purchased as experimental animals without any clear guidelines to follow. Herein, we investigated the status quo of PiCV infections on a pigeon farm in Beijing, China, which provides pigeons for experimental use. RESULTS PiCV infection was verified in at least three types of tissues in all forty pigeons tested. A total of 29 full-length genomes were obtained and deposited in GenBank. The whole genome sequence comparison among the 29 identified PiCV strains revealed nucleotide homologies of 85.8-100%, and these sequences exhibited nucleotide homologies of 82.7-98.9% as compared with those of the reference sequences. The cap gene displayed genetic diversity, with a wide range of amino acid homologies ranging from 64.5% to 100%. Phylogenetic analysis of the 29 full-genome sequences revealed that the PiCV strains in this study could be further divided into four clades: A (17.2%), B (10.4%), C (37.9%) and D (34.5%). Thirteen recombination events were also detected in 18 out of the 29 PiCV genomes obtained in this study. Phylogenetic research using the rep and cap genes verified the recombination events, which occurred between clades A/F, A/B, C/D, and B/D among the 18 PiCV strains studied. CONCLUSIONS In conclusion, PiCV infection, which is highly genetically varied, is extremely widespread on pigeon farms in Beijing. These findings indicate that if pigeons are to be used as experimental animals, it is necessary to evaluate the impact of PiCV infection on the results.
Collapse
Affiliation(s)
- Xiaobo Li
- Institute of Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, 102629, People's Republic of China.
- National Rodent Laboratory Animal Resources Center, National Institutes for Food and Drug Control, Beijing, 102629, People's Republic of China.
- National Laboratory Animal Quality Testing Center, National Institutes for Food and Drug Control, Beijing, 102629, People's Republic of China.
| | - Shujing Wang
- Institute of Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, 102629, People's Republic of China
- National Rodent Laboratory Animal Resources Center, National Institutes for Food and Drug Control, Beijing, 102629, People's Republic of China
- National Laboratory Animal Quality Testing Center, National Institutes for Food and Drug Control, Beijing, 102629, People's Republic of China
| | - Wei Li
- Institute of Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, 102629, People's Republic of China
- National Rodent Laboratory Animal Resources Center, National Institutes for Food and Drug Control, Beijing, 102629, People's Republic of China
- National Laboratory Animal Quality Testing Center, National Institutes for Food and Drug Control, Beijing, 102629, People's Republic of China
| | - Shasha Wang
- Institute of Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, 102629, People's Republic of China
- National Rodent Laboratory Animal Resources Center, National Institutes for Food and Drug Control, Beijing, 102629, People's Republic of China
- National Laboratory Animal Quality Testing Center, National Institutes for Food and Drug Control, Beijing, 102629, People's Republic of China
| | - Xiao Qin
- Institute of Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, 102629, People's Republic of China
- National Rodent Laboratory Animal Resources Center, National Institutes for Food and Drug Control, Beijing, 102629, People's Republic of China
- National Laboratory Animal Quality Testing Center, National Institutes for Food and Drug Control, Beijing, 102629, People's Republic of China
| | - Ji Wang
- Institute of Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, 102629, People's Republic of China.
| | - Rui Fu
- National Laboratory Animal Quality Testing Center, National Institutes for Food and Drug Control, Beijing, 102629, People's Republic of China.
| |
Collapse
|
2
|
Nath BK, Das T, Peters A, Gupta SD, Sarker S, Forwood JK, Raidal SR, Das S. Australasian Pigeon Circoviruses Demonstrate Natural Spillover Infection. Viruses 2023; 15:2025. [PMID: 37896802 PMCID: PMC10611180 DOI: 10.3390/v15102025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Pigeon circovirus (PiCV) is considered to be genetically diverse, with a relatively small circular single-stranded DNA genome of 2 kb that encodes for a capsid protein (Cap) and a replication initiator protein (Rep). Australasia is known to be the origin of diverse species of the Order Columbiformes, but limited data on the PiCV genome sequence has hindered phylogeographic studies in this species. To fill this gap, this study was conducted to investigate PiCV in 118 characteristic samples from different birds across Australia using PCR and sequencing. Eighteen partial PiCV Rep sequences and one complete PiCV genome sequence were recovered from reservoir and aberrant hosts. Phylogenetic analyses revealed that PiCV circulating in Australia was scattered across three different subclades. Importantly, one subclade dominated within the PiCV sequenced from Australia and Poland, whereas other PiCV sequenced in this study were more closely related to the PiCV sequenced from China, USA and Japan. In addition, PiCV Rep sequences obtained from clinically affected plumed whistling duck, blue billed duck and Australian magpie demonstrated natural spillover of PiCV unveiled host generalist characteristics of the pigeon circovirus. These findings indicate that PiCV genomes circulating in Australia lack host adapted population structure but demonstrate natural spillover infection.
Collapse
Affiliation(s)
- Babu Kanti Nath
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (T.D.); (A.P.); (S.R.R.); (S.D.)
- Biosecurity Research Program and Training Centre, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (S.D.G.); (J.K.F.)
| | - Tridip Das
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (T.D.); (A.P.); (S.R.R.); (S.D.)
| | - Andrew Peters
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (T.D.); (A.P.); (S.R.R.); (S.D.)
- Biosecurity Research Program and Training Centre, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (S.D.G.); (J.K.F.)
| | - Suman Das Gupta
- Biosecurity Research Program and Training Centre, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (S.D.G.); (J.K.F.)
| | - Subir Sarker
- Biomedical Sciences & Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4814, Australia;
| | - Jade K. Forwood
- Biosecurity Research Program and Training Centre, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (S.D.G.); (J.K.F.)
- School of Dentistry and Medical Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
- Training Hub Promoting Regional Industry and Innovation in Virology and Epidemiology, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Shane R. Raidal
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (T.D.); (A.P.); (S.R.R.); (S.D.)
| | - Shubhagata Das
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (T.D.); (A.P.); (S.R.R.); (S.D.)
| |
Collapse
|
3
|
Silva BBI, Urzo MLR, Encabo JR, Simbulan AM, Lunaria AJD, Sedano SA, Hsu KC, Chen CC, Tyan YC, Chuang KP. Pigeon Circovirus over Three Decades of Research: Bibliometrics, Scoping Review, and Perspectives. Viruses 2022; 14:1498. [PMID: 35891478 PMCID: PMC9317399 DOI: 10.3390/v14071498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 11/22/2022] Open
Abstract
The pigeon circovirus (PiCV), first described in the literature in the early 1990s, is considered one of the most important infectious agents affecting pigeon health. Thirty years after its discovery, the current review has employed bibliometric strategies to map the entire accessible PiCV-related research corpus with the aim of understanding its present research landscape, particularly in consideration of its historical context. Subsequently, developments, current knowledge, and important updates were provided. Additionally, this review also provides a textual analysis examining the relationship between PiCV and the young pigeon disease syndrome (YPDS), as described and propagated in the literature. Our examination revealed that usages of the term 'YPDS' in the literature are characterizations that are diverse in range, and neither standard nor equivalent. Guided by our understanding of the PiCV research corpus, a conceptualization of PiCV diseases was also presented in this review. Proposed definitions and diagnostic criteria for PiCV subclinical infection (PiCV-SI) and PiCV systemic disease (PiCV-SD) were also provided. Lastly, knowledge gaps and open research questions relevant to future PiCV-related studies were identified and discussed.
Collapse
Affiliation(s)
- Benji Brayan Ilagan Silva
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung 912, Taiwan;
| | - Michael Louie R. Urzo
- Microbiology Division, Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Baños, Los Baños 4031, Laguna, Philippines; (M.L.R.U.); (J.R.E.); (A.M.S.); (A.J.D.L.)
- Graduate School, University of the Philippines Los Baños, Los Baños 4031, Laguna, Philippines
| | - Jaymee R. Encabo
- Microbiology Division, Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Baños, Los Baños 4031, Laguna, Philippines; (M.L.R.U.); (J.R.E.); (A.M.S.); (A.J.D.L.)
| | - Alea Maurice Simbulan
- Microbiology Division, Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Baños, Los Baños 4031, Laguna, Philippines; (M.L.R.U.); (J.R.E.); (A.M.S.); (A.J.D.L.)
| | - Allen Jerard D. Lunaria
- Microbiology Division, Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Baños, Los Baños 4031, Laguna, Philippines; (M.L.R.U.); (J.R.E.); (A.M.S.); (A.J.D.L.)
| | - Susan A. Sedano
- Veterinary Vaccines Laboratory, National Institute of Molecular Biology and Biotechnology, University of the Philippines Los Baños, Los Baños 4031, Laguna, Philippines;
| | - Keng-Chih Hsu
- Language Center, National Pingtung University of Science and Technology, Pingtung 912, Taiwan; (K.-C.H.); (C.-C.C.)
| | - Chia-Chi Chen
- Language Center, National Pingtung University of Science and Technology, Pingtung 912, Taiwan; (K.-C.H.); (C.-C.C.)
- You Guan Yi Biotechnology Company, Kaohsiung 807, Taiwan
| | - Yu-Chang Tyan
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- School of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Kuo-Pin Chuang
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung 912, Taiwan;
- School of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
- School of Dentistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Companion Animal Research Center, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| |
Collapse
|
4
|
Wang H, Gao H, Jiang Z, Shi L, Zhao P, Zhang Y, Wang C. Molecular detection and phylogenetic analysis of pigeon circovirus from racing pigeons in Northern China. BMC Genomics 2022; 23:290. [PMID: 35410130 PMCID: PMC8995411 DOI: 10.1186/s12864-022-08425-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/28/2022] [Indexed: 01/20/2023] Open
Abstract
Background Pigeon circovirus (PiCV) infections in pigeons (Columba livia) have been reported worldwide. Currently, pigeon racing is becoming increasingly popular and considered to be a national sport in China, and even, the greatest competitions of racing pigeons are taking place in China. However, there are still no epidemiologic data regarding PiCV infections among racing pigeons in China. The purpose of our study was to provide information of prevalence, genetic variation and evolution of PiCV from racing pigeons in China. Results To trace the prevalence, genetic variation and evolution of PiCV in sick and healthy racing pigeons, 622 samples were collected from 11 provinces or municipalities in China from 2016 to 2019. The results showed that the positive rate of PiCV was 19.3% (120/622) at the sample level and 59.0% (23/39) at the club level, thus suggesting that the virus was prevalent in Chinese racing pigeons. A sequence analysis revealed that the cap genes of the PiCV strains identified in our study displayed a high genetic diversity and shared nucleotide homologies of 71.9%–100% and amino acid homologies of 71.7%–100%. 28 and 36 unique amino acid substitutions were observed in the Cap and Rep proteins derived from our PiCV strains, respectively. A cladogram representation of PiCV strains phylogeny based on 90 cap gene sequences showed that the strains in this study could be further divided into seven clades (A, B, C, E, G, H, and I) and some of them were closely related to worldwide strains from different types of pigeons. A large number of recombination events (31 events) were also detected in the PiCV genomes from Chinese racing pigeons. Conclusions These findings indicate that PiCV strains circulating in China exhibit a high genetic diversity and also contribute to information of prevalence, genetic variation and evolution of PiCV from racing pigeons in China. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08425-8.
Collapse
Affiliation(s)
- Haoran Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Hui Gao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Zhiwen Jiang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Leibo Shi
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Pengwei Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Yanming Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Chengbao Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
5
|
Stenzel T, Dziewulska D, Śmiałek M, Tykałowski B, Kowalczyk J, Koncicki A. Comparison of the immune response to vaccination with pigeon circovirus recombinant capsid protein (PiCV rCP) in pigeons uninfected and subclinically infected with PiCV. PLoS One 2019; 14:e0219175. [PMID: 31251772 PMCID: PMC6599111 DOI: 10.1371/journal.pone.0219175] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/18/2019] [Indexed: 11/17/2022] Open
Abstract
Infections with immunosuppressive pigeon circovirus (PiCV) pose the most severe health problem to the global pigeon breeding. The vaccination with immunogenic PiCV recombinant capsid protein (PiCV rCP) is a potential tool for disease control. Because of the high prevalence of PiCV asymptomatic infections, the subclinically infected pigeons will be vaccinated in practice. The aim of this study was to answer a question if vaccination of asymptomatic, infected with PiCV pigeons induces a similar immune response to PiCV rCP as in uninfected birds. One hundred and twenty 6-week-old carrier pigeons were divided into 4 groups (2 groups of naturally infected and uninfected with PiCV individuals). Birds from groups V and V1 were vaccinated twice with PiCV rCP mixed with an adjuvant, whereas pigeons from groups C and C1 were immunized with an adjuvant only. The expression of genes encoding IFN-γ, CD4, and CD8 T lymphocyte receptors; the number of anti-PiCV rCP IgY-secreting B cells (SBC) and anti-PiCV rCP IgY were evaluated 2, 21, 39 and 46 days post vaccination (dpv). Study results showed that the expression of CD8 and IFN-γ genes was higher in both groups of infected pigeons than in the uninfected birds, irrespective of vaccination. In the uninfected birds, the expression of these genes was insignificantly higher in the vaccinated pigeons. The anti-PiCV rCP IgY-SBC were detected on 2 and 23 dpv and seroconversion was noted on 23 and 39 dpv in V and V1 groups, respectively. In the light of the results obtained, it could be concluded that pigeon circovirus recombinant capsid protein elicits the immune response in both naturally infected and uninfected pigeons, but its rate varies depending on PiCV infectious status. The infection with PiCV masks the potential cellular immune response to the vaccination with PiCV rCP and leads to the suppression of humoral immunity.
Collapse
Affiliation(s)
- Tomasz Stenzel
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Daria Dziewulska
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Marcin Śmiałek
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Bartłomiej Tykałowski
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Joanna Kowalczyk
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Andrzej Koncicki
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
6
|
Loiko MR, Junqueira DM, Varela APM, Tochetto C, Scheffer CM, Lima DA, Morel AP, Cerva C, Paim WP, Mayer FQ, Roehe PM. Columbid circoviruses detected in free ranging pigeons from Southern Brazil: insights on PiCV evolution. Arch Virol 2018; 163:3083-3090. [PMID: 30105520 DOI: 10.1007/s00705-018-3990-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 06/12/2018] [Indexed: 11/26/2022]
Abstract
Pigeon circovirus (PiCV) is taxonomically classified as a member of the Circovirus genus, family Circoviridae. The virus contains a single stranded DNA genome of approximately 2 kb, with minor length variations among different isolates. The occurrence of PiCV infections in pigeons (Columba livia) has been documented worldwide over the past 20 years; however, in Brazil there were still no reports on PiCV detection. This study identifies seven PiCV genomes recovered from domestic pigeons of South Brazil through high-throughput sequencing and shows a high frequency of PiCV infection, through quantitative real-time PCR. Phylogenetic classification was performed by maximum likelihood analysis of the full genomes, ORF V1 (Rep) and ORF C1 (Cap). The results show that either full genome or Cap based analysis allowed PiCV classification into five major clades (groups A to E), where Brazilian sequences were classified as A, C or D. Recombination analyses were carried out with Simplot and RDP4 and the results show that both Rep and Cap ORFs contain several recombination hotspots, pointing to an important role for such events in PiCV evolution.
Collapse
Affiliation(s)
- M R Loiko
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, UFRGS, Av. Sarmento Leite 500, sala 208, Porto Alegre, Rio Grande do Sul, CEP 90050-170, Brazil
- Laboratório de Biologia Molecular, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Secretaria Estadual de Agricultura, Pecuária e Irrigação, Estrada Municipal do Conde, 6000, Eldorado do Sul, Rio Grande do Sul, CEP 92990-000, Brazil
| | - D M Junqueira
- Centro Universitário Ritter dos Reis-UniRitter, Laureate International Universities, Porto Alegre, Rio Grande do Sul, Brazil
| | - A P M Varela
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, UFRGS, Av. Sarmento Leite 500, sala 208, Porto Alegre, Rio Grande do Sul, CEP 90050-170, Brazil
- Laboratório de Biologia Molecular, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Secretaria Estadual de Agricultura, Pecuária e Irrigação, Estrada Municipal do Conde, 6000, Eldorado do Sul, Rio Grande do Sul, CEP 92990-000, Brazil
| | - C Tochetto
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, UFRGS, Av. Sarmento Leite 500, sala 208, Porto Alegre, Rio Grande do Sul, CEP 90050-170, Brazil
- Laboratório de Biologia Molecular, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Secretaria Estadual de Agricultura, Pecuária e Irrigação, Estrada Municipal do Conde, 6000, Eldorado do Sul, Rio Grande do Sul, CEP 92990-000, Brazil
| | - C M Scheffer
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, UFRGS, Av. Sarmento Leite 500, sala 208, Porto Alegre, Rio Grande do Sul, CEP 90050-170, Brazil
| | - D A Lima
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, UFRGS, Av. Sarmento Leite 500, sala 208, Porto Alegre, Rio Grande do Sul, CEP 90050-170, Brazil
- Laboratório de Biologia Molecular, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Secretaria Estadual de Agricultura, Pecuária e Irrigação, Estrada Municipal do Conde, 6000, Eldorado do Sul, Rio Grande do Sul, CEP 92990-000, Brazil
| | - A P Morel
- Falcoaria e Consultoria Ambiental-HAYABUSA, São Francisco de Paula, RS, Brazil
| | - C Cerva
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, UFRGS, Av. Sarmento Leite 500, sala 208, Porto Alegre, Rio Grande do Sul, CEP 90050-170, Brazil
- Laboratório de Biologia Molecular, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Secretaria Estadual de Agricultura, Pecuária e Irrigação, Estrada Municipal do Conde, 6000, Eldorado do Sul, Rio Grande do Sul, CEP 92990-000, Brazil
| | - W P Paim
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, UFRGS, Av. Sarmento Leite 500, sala 208, Porto Alegre, Rio Grande do Sul, CEP 90050-170, Brazil
- Laboratório de Biologia Molecular, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Secretaria Estadual de Agricultura, Pecuária e Irrigação, Estrada Municipal do Conde, 6000, Eldorado do Sul, Rio Grande do Sul, CEP 92990-000, Brazil
| | - Fabiana Quoos Mayer
- Laboratório de Biologia Molecular, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Secretaria Estadual de Agricultura, Pecuária e Irrigação, Estrada Municipal do Conde, 6000, Eldorado do Sul, Rio Grande do Sul, CEP 92990-000, Brazil.
| | - P M Roehe
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, UFRGS, Av. Sarmento Leite 500, sala 208, Porto Alegre, Rio Grande do Sul, CEP 90050-170, Brazil
| |
Collapse
|
7
|
Bodewes R. Novel viruses in birds: Flying through the roof or is a cage needed? Vet J 2018; 233:55-62. [PMID: 29486880 DOI: 10.1016/j.tvjl.2017.12.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 09/28/2017] [Accepted: 12/28/2017] [Indexed: 01/17/2023]
Abstract
Emerging viral diseases continue to have a major global impact on human beings and animals. To be able to take adequate measures in case of an outbreak of an emerging disease, rapid detection of the causative agent is a crucial first step. In this review, various aspects of virus discovery are discussed, with a special focus on recently discovered viruses in birds. Novel viruses with a potential major impact have been discovered in domestic and wild bird species in recent years using various virus discovery methods. Only a few studies report the detection of novel viruses in endangered bird species, although increased knowledge about viruses circulating in these species is important. Additional studies focusing on the exact role of a novel virus in disease and on the impact of a novel virus on bird populations are often lacking. Intensive collaboration between different disciplines is needed to obtain useful information about the role of these novel viruses.
Collapse
Affiliation(s)
- R Bodewes
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
8
|
Stenzel T, Koncicki A. The epidemiology, molecular characterization and clinical pathology of circovirus infections in pigeons - current knowledge. Vet Q 2017; 37:166-174. [PMID: 28463055 DOI: 10.1080/01652176.2017.1325972] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The first cases of circovirus infections in pigeons were documented less than 25 years ago. Since then, circovirus infections have been reported on nearly all continents. The specificity of pigeon breeding defies biosecurity principles, which could be the reason for the high prevalence of PiCV infections. PiCV infections in pigeons lead to atrophy of immune system organs and lymphocyte apoptosis. Infected birds could be more susceptible to infections of the respiratory and digestive tract. PiCV has been associated with the young pigeon disease syndrome (YPDS). PiCVs are characterized by high levels of genetic diversity due to frequent point mutations, recombination processes in the PiCV genome and positive selection. Genetic recombinations and positive selection play the key role in the evolution of PiCV. A protocol for culturing PiCV under laboratory conditions has not yet been developed, and traditional vaccines against the infection are not available. Recombinant capsid proteins for detecting anti-PiCV antibodies have been obtained, and these antigens can be used in the production of diagnostic tests and subunit vaccines against PiCV infections. However, YPDS has complex etiology, and it remains unknown whether immunization against PiCV alone will contribute to effective control of YPDS.
Collapse
Affiliation(s)
- Tomasz Stenzel
- a Department of Poultry Diseases, Faculty of Veterinary Medicine , University of Warmia and Mazury , Olsztyn , Poland
| | - Andrzej Koncicki
- a Department of Poultry Diseases, Faculty of Veterinary Medicine , University of Warmia and Mazury , Olsztyn , Poland
| |
Collapse
|
9
|
Wang KC, Zhuang QY, Qiu Y, Wang T, Chen JM. Genome sequence characterization of pigeon circoviruses in China. Virus Res 2017; 233:1-7. [PMID: 28268176 DOI: 10.1016/j.virusres.2017.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/01/2017] [Accepted: 03/03/2017] [Indexed: 12/24/2022]
Abstract
Pigeon circovirus (PiCV) was detected by PCR in pigeons from China. Altogether, 48 out of 244 pigeons tested positive for PiCV (positive rate, 19.67%), suggesting that the virus was prevalent in China. From the 48 PiCV-positive samples, about 2040bp complete genome fragments were obtained by full length genome amplification and sequenced with a next-generation sequencing platform. Characteristics of the ORFs from different PiCV strains tested in this study were analyzed. Several insertion, deletion or substitutions were discovered during the analysis of the nucleotide sequence compared with sequences reported previously. In phylogenetic tree analysis, 48 sequences isolated in this study could be further divided into five clades (A, B, C, D, and F), clade E includes reference sequences only. Two major groups were found in the six clades, distinguished by ATA and ATG initiation codons. Most of the viruses isolated in the study were in the ATG group, with fewer in the ATA branch.
Collapse
Affiliation(s)
- Kai-Cheng Wang
- China Animal Health and Epidemiology Center, Qingdao, Shandong Province, China.
| | - Qing-Ye Zhuang
- China Animal Health and Epidemiology Center, Qingdao, Shandong Province, China
| | - Yuan Qiu
- China Animal Health and Epidemiology Center, Qingdao, Shandong Province, China
| | - Tong Wang
- China Animal Health and Epidemiology Center, Qingdao, Shandong Province, China
| | - Ji-Ming Chen
- China Animal Health and Epidemiology Center, Qingdao, Shandong Province, China
| |
Collapse
|