1
|
Zhang RR, Yang XY, Yang YL, Guo TK, Huang JS, Yang YS, Shi CW, Yang GL, Huang HB, Wang JZ, Jiang YL, Cao X, Wang N, Zeng Y, Yang WT, Wang CF. TLR3/TRIF and MAVS Signaling Is Essential in Regulating Mucosal T Cell Responses during Rotavirus Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1008-1022. [PMID: 39194407 DOI: 10.4049/jimmunol.2300867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 07/30/2024] [Indexed: 08/29/2024]
Abstract
The functions of the natural dsRNA sensors TLR3 (TRIF) and RIG-I (MAVS) are crucial during viral challenge and have not been accurately clarified in adaptive immune responses to rotavirus (RV) infection. In this study, we found that RV infection caused severe pathological damage to the small intestine of TLR3-/- and TRIF-/- mice. Our data found that dendritic cells from TLR3-/- and TRIF-/- mice had impaired Ag presentation to the RV and attenuated initiation of T cells upon viral infection. These attenuated functions resulted in impaired CD4+ T and CD8+ T function in mice lacking TLR3-TRIF signaling postinfection. Additionally, attenuated proliferative capacity of T cells from TLR3-/- and TRIF-/- mice was observed. Subsequently, we observed a significant reduction in the absolute number of memory T cells in the spleen and mesenteric lymph node (MLN) of TRIF-/- recipient mice following RV infection in a bone marrow chimeric model. Furthermore, there was reduced migration of type 2 classical dendritic cells from the intestine to MLNs after RV infection in TLR3-/- and TRIF-/- mice. Notably, RV infection resulted in attenuated killing of spleen and MLN tissues in TRIF-/- and MAVS-/- mice. Finally, we demonstrated that RV infection promoted apoptosis of CD8+ T cells in TRIF-/- and TLR3-/-MAVS-/- mice. Taken together, our findings highlight an important mechanism of TLR3 signaling through TRIF in mucosal T cell responses to RV and lay the foundation for the development of a novel vaccine.
Collapse
Affiliation(s)
- Rong-Rong Zhang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Xue-Yao Yang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yong-Lei Yang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Tian-Kui Guo
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jing-Shu Huang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Ying-Shi Yang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chun-Wei Shi
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Gui-Lian Yang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Hai-Bin Huang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jian-Zhong Wang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yan-Long Jiang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Xin Cao
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Nan Wang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yan Zeng
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Wen-Tao Yang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chun-Feng Wang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| |
Collapse
|
2
|
Novikov DV, Vasilchikova EA, Vasilchikov PI. Prospects for the use of viral proteins for the construction of chimeric toxins. Arch Virol 2024; 169:208. [PMID: 39327316 DOI: 10.1007/s00705-024-06139-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/09/2024] [Indexed: 09/28/2024]
Abstract
One of the actively developing areas of drug development is the creation of chimeric toxins, recombinant bifunctional molecules designed to affect target cells selectively. The prevalent approach involves fusing bacterial and plant toxins with molecules that facilitate targeted delivery. However, the therapeutic use of such toxins often encounters challenges associated with negative side effects. Concurrently, viruses encode proteins possessing toxin-like properties, exerting multiple effects on the vital activity of cells. In contrast to bacterial and plant toxins, the impact of viral proteins is typically milder, presenting a significant advantage by potentially reducing the likelihood of side effects. This review delineates the characteristics of extensively studied viral proteins with toxic and immunomodulatory properties and explores the prospects of incorporating them into chimeric toxins.
Collapse
Affiliation(s)
- D V Novikov
- Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology, Nizhny Novgorod, Russia
| | - E A Vasilchikova
- National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - P I Vasilchikov
- National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia.
| |
Collapse
|
3
|
Li S, Tang X, Zhou J, Bian X, Wang J, Gu L, Zhu X, Tao R, Sun M, Zhang X, Li B. The synergy of recombinant NSP4 and VP4 from porcine rotavirus elicited a strong mucosal response. Virology 2024; 597:110130. [PMID: 38850894 DOI: 10.1016/j.virol.2024.110130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/29/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
Porcine rotavirus (PoRV) is one of the main pathogens causing diarrhea in piglets, and multiple genotypes coexist. However, an effective vaccine is currently lacking. Here, the potential adjuvant of nonstructural protein 4 (NSP4) and highly immunogenic structural protein VP4 prompted us to construct recombinant NSP486-175aa (NSP4*) and VP426-476aa (VP4*) proteins, combine them as immunogens to evaluate their efficacy. Results indicated that NSP4* enhanced systemic and local mucosal responses induced by VP4*. The VP4*-IgG, VP4*-IgA in feces and IgA-secreting cells in intestines induced by the co-immunization were significantly higher than those induced by VP4* alone. Co-immunization of NSP4* and VP4* also induced strong cellular immunity with significantly increased IFN-λ than the single VP4*. Summarily, the NSP4* as a synergistical antigen exerted limited effects on the PoRV NAbs elevation, but conferred strong VP4*-specific mucosal and cellular efficacy, which lays the foundation for the development of a more effective porcine rotavirus subunit vaccine.
Collapse
Affiliation(s)
- Sufen Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, 210014, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuechao Tang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, 210014, China
| | - Jinzhu Zhou
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, 210014, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225000, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, 210014, China
| | - Xianyu Bian
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, 210014, China
| | - Jianxin Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, 210014, China
| | - Laqiang Gu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, 210014, China
| | - Xuejiao Zhu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, 210014, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225000, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, 210014, China
| | - Ran Tao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, 210014, China
| | - Min Sun
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, 210014, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225000, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, 210014, China
| | - Xuehan Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, 210014, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225000, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, 210014, China.
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, 210014, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225000, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, 210014, China.
| |
Collapse
|
4
|
Abstract
Rotavirus (RV), the most common cause of gastroenteritis in children, carries a high economic and health burden worldwide. RV encodes six structural proteins and six nonstructural proteins (NSPs) that play different roles in viral replication. NSP4, a multifunctional protein involved in various viral replication processes, has two conserved N-glycosylation sites; however, the role of glycans remains elusive. Here, we used recombinant viruses generated by a reverse genetics system to determine the role of NSP4 N-glycosylation during viral replication and pathogenesis. The growth rate of recombinant viruses that lost one glycosylation site was as high as that of the wild-type virus. However, a recombinant virus that lost both glycosylation sites (glycosylation-defective virus) showed attenuated replication in cultured cell lines. Specifically, replications of glycosylation-defective virus in MA104 and HT29 cells were 10- and 100,000-fold lower, respectively, than that of the wild-type, suggesting that N-glycosylation of NSP4 plays a critical role in RV replication. The glycosylation-defective virus showed NSP4 mislocalization, delay of cytosolic Ca2+ elevation, and less viroplasm formation in MA104 cells; however, these impairments were not observed in HT29 cells. Further analysis revealed that assembly of glycosylation-defective virus was severely impaired in HT29 cells but not in MA104 cells, suggesting that RV replication mechanism is highly cell type dependent. In vivo mouse experiments also showed that the glycosylation-defective virus was less pathogenic than the wild-type virus. Taken together, the data suggest that N-glycosylation of NSP4 plays a vital role in viral replication and pathogenicity. IMPORTANCE Rotavirus is the main cause of gastroenteritis in young children and infants worldwide, contributing to 128,500 deaths each year. Here, we used a reverse genetics approach to examine the role of NSP4 N-glycosylation. An N-glycosylation-defective virus showed attenuated and cell-type-dependent replication in vitro. In addition, mice infected with the N-glycosylation-defective virus had less severe diarrhea than mice infected with the wild type. These results suggest that N-glycosylation affects viral replication and pathogenesis. Considering the reduced pathogenicity in vivo and the high propagation rate in MA104 cells, this glycosylation-defective virus could be an ideal live attenuated vaccine candidate.
Collapse
|
5
|
Qin YF, Gong QL, Zhang M, Sun ZY, Wang W, Wei XY, Chen Y, Zhang Y, Zhao Q, Jiang J. Prevalence of bovine rotavirus among Bovidae in China during 1984-2021: A systematic review and meta-analysis. Microb Pathog 2022; 169:105661. [PMID: 35817280 DOI: 10.1016/j.micpath.2022.105661] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 06/20/2022] [Accepted: 06/26/2022] [Indexed: 11/28/2022]
Abstract
Bovine rotavirus (BRV) is a potential zoonotic intestinal pathogen that brings a serious threat to calf health, and has resulted in huge economic losses to China's breeding industry. Here, a systematic review and meta-analysis was conducted to estimate the prevalence of BRV among Bovidae from 1984 to 2021 in China. A total of 64 publications on BRV investigation in China were screened from the databases Chinese National Knowledge Infrastructure (CNKI), Wan Fang Database, Technology Periodical Database (VIP), PubMed, and ScienceDirect. The random-effect model was used to calculate the pooled prevalence of BRV, and the analyzed data were derived from 25 provinces in China. The estimated pooled prevalence of BRV in China was 35.7% (8176/17,292). In addition, the prevalence of BRV in Southwestern China (77.1%; 2924/3600) was significantly higher than that in other regions of China. Regarding geographic and climatic factors, the prevalence of BRV in the subgroup of latitude 30-35° (76.8%; 3303/4659) was significantly higher than that in the subgroup of latitude less than 30° (37.0%; 485/1275) or more than 35° (32.6%; 1703/5722), while the prevalence of BRV in the subgroup of longitude 100-105° (75.4%; 2513/3849) was significantly higher than that in the subgroup of longitude less than 100° (32.6%; 619/2255) or more than 105° (48.9%; 2359/5552). Rainfall was positively correlated with the prevalence of BRV, whereas temperature was negatively correlated with the positive rate of BRV (P < 0.05). Our data showed that the prevalence of BRV was strongly correlated with geographical and climatic conditions. Thus, we recommend that the corresponding prevention and control programs should be formulated according to different geographical conditions. The strengthening of BRV surveillance in areas with high altitude, low temperature, and heavy rainfall may contribute to the decrease of the incidence of BRV infection among Bovidae herds in China.
Collapse
Affiliation(s)
- Yi-Feng Qin
- College of Life Science, Changchun Sci-Tech University, Shuangyang, Jilin Province, 130600, China; College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin Province, 130118, China
| | - Qing-Long Gong
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin Province, 130118, China
| | - Miao Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Zheng-Yao Sun
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Wei Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, 163319, China
| | - Xin-Yu Wei
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, 163319, China
| | - Yu Chen
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, 163319, China
| | - Yuan Zhang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin Province, 130118, China.
| | - Quan Zhao
- College of Life Science, Changchun Sci-Tech University, Shuangyang, Jilin Province, 130600, China.
| | - Jing Jiang
- College of Life Science, Changchun Sci-Tech University, Shuangyang, Jilin Province, 130600, China.
| |
Collapse
|
6
|
McCowan C, Crameri S, Kocak A, Shan S, Fegan M, Forshaw D, Rubbenstroth D, Chen H, Holmes C, Harper J, Dearnley M, Batovska J, Bergfeld J, Walker C, Wang J. A novel group A rotavirus associated with acute illness and hepatic necrosis in pigeons (Columba livia), in Australia. PLoS One 2018; 13:e0203853. [PMID: 30204797 PMCID: PMC6133385 DOI: 10.1371/journal.pone.0203853] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/28/2018] [Indexed: 12/17/2022] Open
Abstract
Cases of vomiting and diarrhoea were reported in racing pigeons in Western Australia in May, 2016. Morbidity and mortality rates were high. Similar clinical disease was seen in Victoria in December and by early 2017 had been reported in all states except the Northern Territory, in different classes of domestic pigeon–racing, fancy and meat bird–and in a flock of feral pigeons. Autopsy findings were frequently unremarkable; histological examination demonstrated significant hepatic necrosis as the major and consistent lesion, often with minimal inflammatory infiltration. Negative contrast tissue suspension and thin section transmission electron microscopy of liver demonstrated virus particles consistent with a member of the Reoviridae. Inoculation of trypsin-treated Vero, MDBK and MA-104 cell lines resulted in cytopathic changes at two days after infection. Next generation sequencing was undertaken using fresh liver samples and a previously undescribed group A rotavirus (genotype G18P[17]) of avian origin was identified and the virus was isolated in several cell lines. A q-RT-PCR assay was developed and used to screen a wider range of samples, including recovered birds. Episodes of disease have continued to occur and to reoccur in previously recovered lofts, with variable virulence reported. This is the first report of a rotavirus associated with hepatic necrosis in any avian species.
Collapse
Affiliation(s)
| | - Sandra Crameri
- Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Ayfer Kocak
- Agriculture Victoria, Bundoora, Victoria, Australia
| | - Songhua Shan
- Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Mark Fegan
- Agriculture Victoria, Bundoora, Victoria, Australia
| | - David Forshaw
- Department of Primary Industries and Regional Development, Albany, Western Australia, Australia
| | - Dennis Rubbenstroth
- Institute of Virology, Medical Center–University of Freiburg, Freiburg, Germany
- Institute for Diagnostic Virology, Friedrich-Loeffler-Institute (FLI), Greifswald–Insel Riems, Germany
| | - Honglei Chen
- Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Clare Holmes
- Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Jenni Harper
- Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Megan Dearnley
- Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Jana Batovska
- Agriculture Victoria, Bundoora, Victoria, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia
| | - Jemma Bergfeld
- Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Colin Walker
- Melbourne Bird Veterinary Clinic, Scoresby, Melbourne, Australia
| | - Jianning Wang
- Australian Animal Health Laboratory, Geelong, Victoria, Australia
| |
Collapse
|