1
|
Effectiveness of Live-Attenuated Genotype III Japanese Encephalitis Viral Vaccine against Circulating Genotype I Viruses in Swine. Viruses 2022; 14:v14010114. [PMID: 35062317 PMCID: PMC8778556 DOI: 10.3390/v14010114] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/02/2022] [Accepted: 01/07/2022] [Indexed: 01/15/2023] Open
Abstract
Expansion of genotype I (GI) Japanese encephalitis viruses (JEV) has resulted in the replacement of the dominant genotype III (GIII) viruses, raising serious public health concerns for using GIII virus-derived vaccines to effectively control JEV epidemics. Therefore, this study used swine as the model to estimate the effectiveness of GIII live-attenuated vaccine against GI virus infection by comparing the incidence of stillbirth/abortion in gilts from vaccinated and non-vaccinated pig farms during the GI-circulation period. In total, 389 and 213 litters of gilts were recorded from four vaccinated and two non-vaccinated pig farms, respectively. All viruses detected in the aborted fetuses and mosquitoes belonged to the GI genotype during the study period. We thus estimated that the vaccine effectiveness of GIII live-attenuated vaccine against GI viruses in naive gilts based on the overall incidence of stillbirth/abortion and incidence of JEV-confirmed stillbirth/abortion was 65.5% (50.8–75.7%) and 74.7% (34.5–90.2%), respectively. In contrast to previous estimates, the GIII live-attenuated vaccine had an efficacy of 95.6% (68.3–99.4%) to prevent the incidence of stillbirth/abortion during the GIII-circulating period. These results indicate that the vaccine effectiveness of GIII live-attenuated JEV vaccine to prevent stillbirth/abortion caused by GI viruses is lower than that against GIII viruses.
Collapse
|
2
|
Anwar MN, Wang X, Hameed M, Wahaab A, Li C, Sharma M, Pang L, Malik MI, Liu K, Li B, Qiu Y, Wei J, Ma Z. Phenotypic and Genotypic Comparison of a Live-Attenuated Genotype I Japanese Encephalitis Virus SD12-F120 Strain with Its Virulent Parental SD12 Strain. Viruses 2020; 12:v12050552. [PMID: 32429445 PMCID: PMC7290960 DOI: 10.3390/v12050552] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/05/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023] Open
Abstract
The phenotypic and genotypic characteristics of a live-attenuated genotype I (GI) strain (SD12-F120) of Japanese encephalitis virus (JEV) were compared with its virulent parental SD12 strain to gain an insight into the genetic changes acquired during the attenuation process. SD12-F120 formed smaller plaque on BHK-21 cells and showed reduced replication in mouse brains compared with SD12. Mice inoculated with SD12-F120 via either intraperitoneal or intracerebral route showed no clinical symptoms, indicating a highly attenuated phenotype in terms of both neuroinvasiveness and neurovirulence. SD12-F120 harbored 29 nucleotide variations compared with SD12, of which 20 were considered silent nucleotide mutations, while nine resulted in eight amino acid substitutions. Comparison of the amino acid variations of SD12-F120 vs. SD12 pair with those from other four isogenic pairs of the attenuated and their virulent parental strains revealed that the variations at E138 and E176 positions of E protein were identified in four and three pairs, respectively, while the remaining amino acid variations were almost unique to their respective strain pairs. These observations suggest that the genetic changes acquired during the attenuation process were likely to be strain-specific and that the mechanisms associated with JEV attenuation/virulence are complicated.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Jianchao Wei
- Correspondence: (J.W.); (Z.M.); Tel.: +86-21-3468-3635 (J.W.); +86-21-34293139 (Z.M.); Fax: +86-21-54081818 (J.W. & Z.M.)
| | - Zhiyong Ma
- Correspondence: (J.W.); (Z.M.); Tel.: +86-21-3468-3635 (J.W.); +86-21-34293139 (Z.M.); Fax: +86-21-54081818 (J.W. & Z.M.)
| |
Collapse
|
3
|
Xu Y, Wang Q, Wei B, Huang X, Wen Y, Yan Q, Ma X, Zhao Q, Cao S, Huang Y, Wen X, Han X, Bai Y, Wu R. Enhanced Immune Responses Against Japanese Encephalitis Virus Infection Using Japanese Encephalitis Live-Attenuated Virus Adjuvanted with Montanide GEL 01 ST in Mice. Vector Borne Zoonotic Dis 2019; 19:835-843. [PMID: 31314706 DOI: 10.1089/vbz.2018.2419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Japanese encephalitis virus (JEV) is one of the major causes of acute encephalitis in human and animal. To prevent JEV infection, an effective live-attenuated vaccine is needed. In the article, JEV attenuated strain, SCYA201201 of GI genotype, which was mixed with 10% concentrate GEL 01 ST adjuvant (Montanide™ GEL 01 ST), was selected for a vaccine candidate and its immunogenicity was evaluated in mice. Our results showed that JEV mixed with GEL 01 ST elicited production of both IgG1 and IgG2a antibodies, and enhanced virus-specific crossprotective intergenotypic response in mice. Proliferation of splenocytes was observed in all immunized groups and a relatively higher proliferation activity was detected in JEV mixed with GEL 01 ST group (p < 0.05). In the JEV + 10% GEL 01 ST vaccinated group, the proportion of CD4+ T cells in spleen was significantly higher than that of control group (p < 0.05), and the yields of interleukin (IL)-2, IL-4, and interferon-γ in the splenocyte supernatant were also significantly higher than that of control group (p < 0.05). Moreover, complete protection was provided after JEV challenge in mice in JEV mixed with GEL 01 ST group, and early immunity was detected in those mice immunized with JEV mixed with GEL 01 ST. These findings confirm that GEL 01 ST can enhance JEV live-attenuated immunogenicity, and JEV +10% GEL 01 ST used as vaccine candidates provide protection against JEV infection in a mouse model, which could be used as potential vaccine candidates in pig.
Collapse
Affiliation(s)
- Yixuan Xu
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Wang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bowen Wei
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaobo Huang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yiping Wen
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qigui Yan
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoping Ma
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qin Zhao
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sanjie Cao
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
| | - Yong Huang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xintian Wen
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinfeng Han
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yu Bai
- Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
| | - Rui Wu
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
| |
Collapse
|