1
|
Chen QY, Sun ZH, Che YL, Chen RJ, Wu XM, Wu RJ, Wang LB, Zhou LJ. High Prevalence, Genetic Diversity, and Recombination of Porcine Sapelovirus in Pig Farms in Fujian, Southern China. Viruses 2023; 15:1751. [PMID: 37632093 PMCID: PMC10458035 DOI: 10.3390/v15081751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Porcine sapelovirus (PSV) is a ubiquitous virus in farmed pigs that is associated with SMEDI syndrome, polioencephalomyelitis, and diarrhea. However, there are few reports on the prevalence and molecular characterization of PSV in Fujian Province, Southern China. In this study, the prevalence of PSV and a poetical combinative strain PSV2020 were characterized using real-time PCR, sequencing, and bioinformatics analysis. As a result, an overall sample prevalence of 30.8% was detected in 260 fecal samples, and a farm prevalence of 76.7% was observed in 30 Fujian pig farms, from 2020 to 2022. Noteably, a high rate of PSV was found in sucking pigs. Bioinformatics analysis showed that the full-length genome of PSV2020 was 7550 bp, and the genetic evolution of its ORF region was closest to the G1 subgroup, which was isolated from Asia and America; the similarity of nucleotides and amino acids to other PSVs was 59.5~88.7% and 51.7~97.0%, respectively. However, VP1 genetic evolution analysis showed a distinct phylogenetic topology from the ORF region; PSV2020 VP1 was closer to the DIAPD5469-10 strain isolated from Italy than strains isolated from Asia and America, which comprise the G1 subgroup based on the ORF region. Amino acid discrepancy analysis illustrated that the PSV2020 VP1 gene inserted twelve additional nucleotides, corresponding to four additional amino acids (STAE) at positions 898-902 AAs. Moreover, a potential recombination signal was observed in the 2A coding region, near the 3' end of VP1, owing to recombination analysis. Additionally, 3D genetic evolutionary analysis showed that all reference strains demonstrated, to some degree, regional conservation. These results suggested that PSV was highly prevalent in Fujian pig farms, and PSV2020, a PSV-1 genotype strain, showed gene diversity and recombination in evolutionary progress. This study also laid a scientific foundation for the investigation of PSV epidemiology, molecular genetic characteristics, and vaccine development.
Collapse
Affiliation(s)
- Qiu-Yong Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fujian Animal Disease Control Technology Development Center, Fuzhou 350013, China; (Q.-Y.C.); (Y.-L.C.); (R.-J.C.); (X.-M.W.); (R.-J.W.)
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Zhi-Hua Sun
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Yong-Liang Che
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fujian Animal Disease Control Technology Development Center, Fuzhou 350013, China; (Q.-Y.C.); (Y.-L.C.); (R.-J.C.); (X.-M.W.); (R.-J.W.)
| | - Ru-Jing Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fujian Animal Disease Control Technology Development Center, Fuzhou 350013, China; (Q.-Y.C.); (Y.-L.C.); (R.-J.C.); (X.-M.W.); (R.-J.W.)
| | - Xue-Min Wu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fujian Animal Disease Control Technology Development Center, Fuzhou 350013, China; (Q.-Y.C.); (Y.-L.C.); (R.-J.C.); (X.-M.W.); (R.-J.W.)
| | - Ren-Jie Wu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fujian Animal Disease Control Technology Development Center, Fuzhou 350013, China; (Q.-Y.C.); (Y.-L.C.); (R.-J.C.); (X.-M.W.); (R.-J.W.)
| | - Long-Bai Wang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fujian Animal Disease Control Technology Development Center, Fuzhou 350013, China; (Q.-Y.C.); (Y.-L.C.); (R.-J.C.); (X.-M.W.); (R.-J.W.)
| | - Lun-Jiang Zhou
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fujian Animal Disease Control Technology Development Center, Fuzhou 350013, China; (Q.-Y.C.); (Y.-L.C.); (R.-J.C.); (X.-M.W.); (R.-J.W.)
| |
Collapse
|
2
|
Ibrahim YM, Zhang W, Werid GM, Zhang H, Feng Y, Pan Y, Zhang L, Li C, Lin H, Chen H, Wang Y. Isolation, Characterization, and Molecular Detection of Porcine Sapelovirus. Viruses 2022; 14:v14020349. [PMID: 35215935 PMCID: PMC8877214 DOI: 10.3390/v14020349] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/30/2022] [Accepted: 02/05/2022] [Indexed: 12/25/2022] Open
Abstract
Porcine sapelovirus (PSV) is an important emerging pathogen associated with a wide variety of diseases in swine, including acute diarrhoea, respiratory distress, skin lesions, severe neurological disorders, and reproductive failure. Although PSV is widespread, serological assays for field-based epidemiological studies are not yet available. Here, four PSV strains were recovered from diarrheic piglets, and electron microscopy revealed virus particles with a diameter of ~32 nm. Analysis of the entire genome sequence revealed that the genomes of PSV isolates ranged 7569–7572 nucleotides in length. Phylogenetic analysis showed that the isolated viruses were classified together with strains from China. Additionally, monoclonal antibodies for the recombinant PSV-VP1 protein were developed to specifically detect PSV infection in cells, and we demonstrated that isolated PSVs could only replicate in cells of porcine origin. Using recombinant PSV-VP1 protein as the coating antigen, we developed an indirect ELISA for the first time for the detection of PSV antibodies in serum. A total of 516 swine serum samples were tested, and PSV positive rate was 79.3%. The virus isolates, monoclonal antibodies and indirect ELISA developed would be useful for further understanding the pathophysiology of PSV, developing new diagnostic assays, and investigating the epidemiology of the PSV.
Collapse
Affiliation(s)
- Yassein M. Ibrahim
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (Y.M.I.); (W.Z.); (G.M.W.); (H.Z.); (Y.P.); (L.Z.); (C.L.); (H.L.); (H.C.)
| | - Wenli Zhang
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (Y.M.I.); (W.Z.); (G.M.W.); (H.Z.); (Y.P.); (L.Z.); (C.L.); (H.L.); (H.C.)
| | - Gebremeskel Mamu Werid
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (Y.M.I.); (W.Z.); (G.M.W.); (H.Z.); (Y.P.); (L.Z.); (C.L.); (H.L.); (H.C.)
| | - He Zhang
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (Y.M.I.); (W.Z.); (G.M.W.); (H.Z.); (Y.P.); (L.Z.); (C.L.); (H.L.); (H.C.)
| | - Yawen Feng
- Laboratory of Inspection and Testing, Hebei Provincial Station of Veterinary Drug and Feed, Shijiazhuang 050000, China;
| | - Yu Pan
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (Y.M.I.); (W.Z.); (G.M.W.); (H.Z.); (Y.P.); (L.Z.); (C.L.); (H.L.); (H.C.)
| | - Lin Zhang
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (Y.M.I.); (W.Z.); (G.M.W.); (H.Z.); (Y.P.); (L.Z.); (C.L.); (H.L.); (H.C.)
| | - Changwen Li
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (Y.M.I.); (W.Z.); (G.M.W.); (H.Z.); (Y.P.); (L.Z.); (C.L.); (H.L.); (H.C.)
| | - Huan Lin
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (Y.M.I.); (W.Z.); (G.M.W.); (H.Z.); (Y.P.); (L.Z.); (C.L.); (H.L.); (H.C.)
| | - Hongyan Chen
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (Y.M.I.); (W.Z.); (G.M.W.); (H.Z.); (Y.P.); (L.Z.); (C.L.); (H.L.); (H.C.)
| | - Yue Wang
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (Y.M.I.); (W.Z.); (G.M.W.); (H.Z.); (Y.P.); (L.Z.); (C.L.); (H.L.); (H.C.)
- Correspondence:
| |
Collapse
|
3
|
Exploring the Cause of Diarrhoea and Poor Growth in 8-11-Week-Old Pigs from an Australian Pig Herd Using Metagenomic Sequencing. Viruses 2021; 13:v13081608. [PMID: 34452472 PMCID: PMC8402840 DOI: 10.3390/v13081608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 12/24/2022] Open
Abstract
Diarrhoea and poor growth among growing pigs is responsible for significant economic losses in pig herds globally and can have a wide range of possible aetiologies. Next generation sequencing (NGS) technologies are useful for the detection and characterisation of diverse groups of viruses and bacteria and can thereby provide a better understanding of complex interactions among microorganisms potentially causing clinical disease. Here, we used a metagenomics approach to identify and characterise the possible pathogens in colon and lung samples from pigs with diarrhoea and poor growth in an Australian pig herd. We identified and characterized a wide diversity of porcine viruses including RNA viruses, in particular several picornaviruses—porcine sapelovirus (PSV), enterovirus G (EV-G), and porcine teschovirus (PTV), and a porcine astrovirus (PAstV). Single stranded DNA viruses were also detected and included parvoviruses like porcine bocavirus (PBoV) and porcine parvovirus 2 (PPV2), porcine parvovirus 7 (PPV7), porcine bufa virus (PBuV), and porcine adeno-associated virus (AAV). We also detected single stranded circular DNA viruses such as porcine circovirus type 2 (PCV2) at very low abundance and torque teno sus viruses (TTSuVk2a and TTSuVk2b). Some of the viruses detected here may have had an evolutionary past including recombination events, which may be of importance and potential involvement in clinical disease in the pigs. In addition, our metagenomics data found evidence of the presence of the bacteria Lawsonia intracellularis, Brachyspira spp., and Campylobacter spp. that may, together with these viruses, have contributed to the development of clinical disease and poor growth.
Collapse
|
4
|
Li N, Tao J, Li B, Cheng J, Shi Y, Xiaohui S, Liu H. Molecular characterization of a porcine sapelovirus strain isolated in China. Arch Virol 2021; 166:2683-2692. [PMID: 34268639 DOI: 10.1007/s00705-021-05153-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/09/2021] [Indexed: 01/06/2023]
Abstract
Porcine sapelovirus (PSV) infections have been associated with a wide spectrum of symptoms, ranging from asymptomatic infection to clinical signs including diarrhoea, pneumonia, reproductive disorders, and polioencephalomyelitis. Although it has a global distribution, there have been relatively few studies on PSV in domestic animals. We isolated a PSV strain, SHCM2019, from faecal specimens from swine, using PK-15 cells. To investigate its molecular characteristics and pathogenicity, the genomic sequence of strain SHCM2019 was analysed, and clinical manifestations and pathological changes occurring after inoculation of neonatal piglets were observed. The virus isolated using PK-15 cells was identified as PSV using RT-PCR, transmission electron microscopy (TEM), and immunofluorescence assay (IFA). Sequencing results showed that the full-length genome of the SHCM2019 strain was 7,567 nucleotides (nt) in length, including a 27-nucleotide poly(A) tail. Phylogenetic analysis demonstrated that this virus was a PSV isolate belonging to the Chinese strain cluster. Recombination analysis indicated that there might be a recombination breakpoint upstream of the 3D region of the genome. Pathogenicity experiments demonstrated that the virus isolate could cause diarrhoea and pneumonia in piglets. In breif, a recombinant PSV strain, SHCM2019, was isolated and shown to be pathogenic. Our results may provide a reference for future research on the pathogenic mechanism and evolutionary characteristics of PSV.
Collapse
Affiliation(s)
- Nana Li
- Institute of Animal Husbandry and Veterinary, Shanghai Academy of Agricultural Science, No. 2901 Beidi Road, Minhang District, Shanghai, People's Republic of China
| | - Jie Tao
- Institute of Animal Husbandry and Veterinary, Shanghai Academy of Agricultural Science, No. 2901 Beidi Road, Minhang District, Shanghai, People's Republic of China
| | - Benqiang Li
- Institute of Animal Husbandry and Veterinary, Shanghai Academy of Agricultural Science, No. 2901 Beidi Road, Minhang District, Shanghai, People's Republic of China
| | - Jinghua Cheng
- Institute of Animal Husbandry and Veterinary, Shanghai Academy of Agricultural Science, No. 2901 Beidi Road, Minhang District, Shanghai, People's Republic of China
| | - Ying Shi
- Institute of Animal Husbandry and Veterinary, Shanghai Academy of Agricultural Science, No. 2901 Beidi Road, Minhang District, Shanghai, People's Republic of China
| | - Shi Xiaohui
- Institute of Animal Husbandry and Veterinary, Shanghai Academy of Agricultural Science, No. 2901 Beidi Road, Minhang District, Shanghai, People's Republic of China
| | - Huili Liu
- Institute of Animal Husbandry and Veterinary, Shanghai Academy of Agricultural Science, No. 2901 Beidi Road, Minhang District, Shanghai, People's Republic of China.
| |
Collapse
|
5
|
Detection and Characterization of Porcine Sapelovirus in Italian Pig Farms. Animals (Basel) 2020; 10:ani10060966. [PMID: 32498384 PMCID: PMC7341194 DOI: 10.3390/ani10060966] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/14/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Sapelovirus (PSV) is known to infect pigs asymptomatically but, sporadically, can cause reproductive failure and severe neurologic, enteric, or respiratory signs. Sapelovirus infections have been reported worldwide in pigs. However, information about PSV circulation in Italy is unavailable and rarely investigated across Europe. In this study, we reported the circulation of PSV in three Italian pig farms and added novel information about evolutionary heterogeneity of PSV strains showing a low genetic correlation with the other strains detected worldwide. The present study gives information about PSV circulation in intensive pig farms and highlights the need for further investigation. Abstract Porcine sapelovirus (PSV) belongs to the genus Sapelovirus of the family Picornaviridae. PSV infects pigs asymptomatically, but it can also cause severe neurologic, enteric, and respiratory symptoms or reproductive failure. Sapelovirus infections have been reported worldwide in pigs. The objective of this study was to investigate the presence and the prevalence of PSV in Italian swine farms in animals of different ages to clarify the occurrence of the infection and the genetic characteristics of circulating strains. In the present study, 92 pools of fecal samples, collected from pigs across three farms, were analyzed by Reverse Transcriptase-polymerase Chain Reaction-PCR (RT-PCR). Fecal pools from young growers (63/64) were found positive for Sapelovirus in all farms while detection in sows (4/28) was observed in only one farm. Phylogenetic analyses of the 19 partial capsid protein nucleotide sequences (VP1) (6–7 each farm) enable the classification of the virus sequences into three distinct clades and highlighted the high heterogeneity within one farm. The whole genome sequence obtained from one strain showed the highest correlation with the Italian strain detected in 2015. The study adds novel information about the circulation and heterogeneity of PSV strains in Italy and considering the movement of pigs across Europe would also be informative for other countries.
Collapse
|
6
|
Boros Á, László Z, Pankovics P, Marosi A, Albert M, Cságola A, Bíró H, Fahsbender E, Delwart E, Reuter G. High prevalence, genetic diversity and a potentially novel genotype of Sapelovirus A ( Picornaviridae) in enteric and respiratory samples in Hungarian swine farms. J Gen Virol 2020; 101:609-621. [PMID: 32255421 DOI: 10.1099/jgv.0.001410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
All of the known porcine sapeloviruses (PSVs) currently belong to a single genotype in the genus Sapelovirus (family Picornaviridae). Here, the complete genome of a second, possibly recombinant, genotype of PSV strain SZ1M-F/PSV/HUN2013 (MN807752) from a faecal sample of a paraplegic pig in Hungary was characterized using viral metagenomics and RT-PCR. This sapelovirus strain showed only 64 % nucleotide identity in the VP1 region to its closest PSV-1 relative. Complete VP1 sequence-based epidemiological investigations of PSVs circulating in Hungary showed the presence of diverse strains found in high prevalence in enteric and respiratory samples collected from both asymptomatic and paraplegic pigs from 12 swine farms. Virus isolation attempts using PK-15 cell cultures were successful in 3/8 cases for the classic but not the novel PSV genotype. Sequence comparisons of faeces and isolate strains derived VP1 showed that cultured PSV strains not always represent the dominant PSVs found in vivo.
Collapse
Affiliation(s)
- Ákos Boros
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary
| | - Zoltán László
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary
| | - Péter Pankovics
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary
| | - András Marosi
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary
| | | | | | | | | | - Eric Delwart
- University of California, San Francisco, CA, USA.,Vitalant Research Institute, San Francisco, CA, USA
| | - Gábor Reuter
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
7
|
Harima H, Kajihara M, Simulundu E, Bwalya E, Qiu Y, Isono M, Okuya K, Gonzalez G, Yamagishi J, Hang’ombe BM, Sawa H, Mweene AS, Takada A. Genetic and Biological Diversity of Porcine Sapeloviruses Prevailing in Zambia. Viruses 2020; 12:v12020180. [PMID: 32033383 PMCID: PMC7077239 DOI: 10.3390/v12020180] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 01/07/2023] Open
Abstract
Porcine sapelovirus (PSV) has been detected worldwide in pig populations. Although PSV causes various symptoms such as encephalomyelitis, diarrhea, and pneumonia in pigs, the economic impact of PSV infection remains to be determined. However, information on the distribution and genetic diversity of PSV is quite limited, particularly in Africa. In this study, we investigated the prevalence of PSV infection in Zambia and characterized the isolated PSVs genetically and biologically. We screened 147 fecal samples collected in 2018 and found that the prevalences of PSV infection in suckling pigs and fattening pigs were high (36.2% and 94.0%, respectively). Phylogenetic analyses revealed that the Zambian PSVs were divided into three different lineages (Lineages 1–3) in the clade consisting of Chinese strains. The Zambian PSVs belonging to Lineages 2 and 3 replicated more efficiently than those belonging to Lineage 1 in Vero E6 and BHK cells. Bioinformatic analyses revealed that genetic recombination events had occurred and the recombination breakpoints were located in the L and 2A genes. Our results indicated that at least two biologically distinct PSVs could be circulating in the Zambian pig population and that genetic recombination played a role in the evolution of PSVs.
Collapse
Affiliation(s)
- Hayato Harima
- Hokudai Center for Zoonosis Control in Zambia, School of Veterinary Medicine, the University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia; (H.H.); (Y.Q.)
| | - Masahiro Kajihara
- Hokudai Center for Zoonosis Control in Zambia, School of Veterinary Medicine, the University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia; (H.H.); (Y.Q.)
- Correspondence: (M.K.); (A.T.); Tel.: +81-11-706-7327 (M.K.); +81-11-706-9502 (A.T.)
| | - Edgar Simulundu
- Department of Disease Control, School of Veterinary Medicine, the University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia; (E.S.); (H.S.); (A.S.M.)
| | - Eugene Bwalya
- Department of Clinical Studies, School of Veterinary Medicine, the University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia;
| | - Yongjin Qiu
- Hokudai Center for Zoonosis Control in Zambia, School of Veterinary Medicine, the University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia; (H.H.); (Y.Q.)
| | - Mao Isono
- Division of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, N20 W10, Kita-ku, Sapporo 001-0020, Japan; (M.I.); (K.O.)
| | - Kosuke Okuya
- Division of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, N20 W10, Kita-ku, Sapporo 001-0020, Japan; (M.I.); (K.O.)
| | - Gabriel Gonzalez
- Division of Bioinformatics, Hokkaido University Research Center for Zoonosis Control, N20 W10, Kita-ku, Sapporo 001-0020, Japan;
| | - Junya Yamagishi
- Division of Collaboration and Education, Hokkaido University Research Center for Zoonosis Control, N20 W10, Kita-ku, Sapporo 001-0020, Japan;
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University Kita-ku, Sapporo 001-0020, Japan
| | - Bernard M. Hang’ombe
- Department of Para-Clinical Studies, School of Veterinary Medicine, the University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia;
- Africa Center of Excellence for Infectious Diseases of Humans and Animals, the University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia
| | - Hirofumi Sawa
- Department of Disease Control, School of Veterinary Medicine, the University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia; (E.S.); (H.S.); (A.S.M.)
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University Kita-ku, Sapporo 001-0020, Japan
- Africa Center of Excellence for Infectious Diseases of Humans and Animals, the University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia
- Division of Molecular Pathobiology, Hokkaido University Research Center for Zoonosis Control, N20 W10, Kita-ku, Sapporo 001-0020, Japan
- Global Virus Network, 725 West Lombard St, Room S413, Baltimore, MD 21201, USA
| | - Aaron S. Mweene
- Department of Disease Control, School of Veterinary Medicine, the University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia; (E.S.); (H.S.); (A.S.M.)
- Africa Center of Excellence for Infectious Diseases of Humans and Animals, the University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia
| | - Ayato Takada
- Department of Disease Control, School of Veterinary Medicine, the University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia; (E.S.); (H.S.); (A.S.M.)
- Division of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, N20 W10, Kita-ku, Sapporo 001-0020, Japan; (M.I.); (K.O.)
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University Kita-ku, Sapporo 001-0020, Japan
- Africa Center of Excellence for Infectious Diseases of Humans and Animals, the University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia
- Correspondence: (M.K.); (A.T.); Tel.: +81-11-706-7327 (M.K.); +81-11-706-9502 (A.T.)
| |
Collapse
|
8
|
Nearly Complete Genome Sequence of a Sapelovirus A Strain Identified in Swine in Italy. Microbiol Resour Announc 2019; 8:8/29/e00481-19. [PMID: 31320410 PMCID: PMC6639612 DOI: 10.1128/mra.00481-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We report the first nearly complete genome sequence of a porcine sapelovirus (PSV) A strain that was identified from feces of piglets suffering from diarrhea in Italy in 2015. Phylogenetic investigations revealed a separate clustering for the Italian PSV, indicating unique molecular features. We report the first nearly complete genome sequence of a porcine sapelovirus (PSV) A strain that was identified from feces of piglets suffering from diarrhea in Italy in 2015. Phylogenetic investigations revealed a separate clustering for the Italian PSV, indicating unique molecular features.
Collapse
|
9
|
Kumari S, Singh R, Desingu PA, Ray PK, Taru Sharma G, Saikumar G. Immunocytochemistry assay in BHK-21 cell line infected with Porcine Sapelovirus. Cytotechnology 2019; 71:751-755. [PMID: 31011920 DOI: 10.1007/s10616-019-00315-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 04/06/2019] [Indexed: 12/21/2022] Open
Abstract
The present study describes an immunocytochemistry (ICC) assay with self-raised hyperimmune sera and a Baby Hamster Kidney-21 (BHK-21) cell line infected with Porcine Sapelovirus (PSV). Sapelovivus/IVRI/SPF-c-6/2015 strain Indian PSV was isolated from the porcine IBRS-2 cell line and investigated for growth on non-porcine cell lines. After two passages, PSV was successfully grown in BHK-21 and produced the same cytopathic effects as in IBRS-2 such as shrinking of cytoplasm, rounding of cells and detachment of cells from the surface of flask within 24 h. For raising of hyperimmune sera, PSV was grown in IBRS-2 cell line up to the required volume and purified by ultracentrifugation. With self-raised hyperimmune sera in laboratory rats, ICC was performed in BHK-21 cells infected with PSV. Positive signals consisted of large granular aggregates of virus in the cytoplasm near the nucleus, suggesting that PSV can infect cell lines other than those of porcine origin.
Collapse
Affiliation(s)
- Swati Kumari
- Division of Pathology, ICAR- Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Rahul Singh
- Division of Pathology, ICAR- Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - P A Desingu
- Division of Pathology, ICAR- Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - P K Ray
- Division of Pathology, ICAR- Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - G Taru Sharma
- Physiology and Climatology Division, ICAR- Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - G Saikumar
- Division of Pathology, ICAR- Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India. .,Molecular Pathology Laboratory, Swine Disease Laboratory, ICAR- Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India.
| |
Collapse
|