1
|
Belean A, Xue E, Cisneros B, Roberson EDO, Paley MA, Bigley TM. Transcriptomic profiling of thymic dysregulation and viral tropism after neonatal roseolovirus infection. Front Immunol 2024; 15:1375508. [PMID: 38895117 PMCID: PMC11183875 DOI: 10.3389/fimmu.2024.1375508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/10/2024] [Indexed: 06/21/2024] Open
Abstract
Introduction Herpesviruses, including the roseoloviruses, have been linked to autoimmune disease. The ubiquitous and chronic nature of these infections have made it difficult to establish a causal relationship between acute infection and subsequent development of autoimmunity. We have shown that murine roseolovirus (MRV), which is highly related to human roseoloviruses, induces thymic atrophy and disruption of central tolerance after neonatal infection. Moreover, neonatal MRV infection results in development of autoimmunity in adult mice, long after resolution of acute infection. This suggests that MRV induces durable immune dysregulation. Methods In the current studies, we utilized single-cell RNA sequencing (scRNAseq) to study the tropism of MRV in the thymus and determine cellular processes in the thymus that were disrupted by neonatal MRV infection. We then utilized tropism data to establish a cell culture system. Results Herein, we describe how MRV alters the thymic transcriptome during acute neonatal infection. We found that MRV infection resulted in major shifts in inflammatory, differentiation and cell cycle pathways in the infected thymus. We also observed shifts in the relative number of specific cell populations. Moreover, utilizing expression of late viral transcripts as a proxy of viral replication, we identified the cellular tropism of MRV in the thymus. This approach demonstrated that double negative, double positive, and CD4 single positive thymocytes, as well as medullary thymic epithelial cells were infected by MRV in vivo. Finally, by applying pseudotime analysis to viral transcripts, which we refer to as "pseudokinetics," we identified viral gene transcription patterns associated with specific cell types and infection status. We utilized this information to establish the first cell culture systems susceptible to MRV infection in vitro. Conclusion Our research provides the first complete picture of roseolovirus tropism in the thymus after neonatal infection. Additionally, we identified major transcriptomic alterations in cell populations in the thymus during acute neonatal MRV infection. These studies offer important insight into the early events that occur after neonatal MRV infection that disrupt central tolerance and promote autoimmune disease.
Collapse
Affiliation(s)
- Andrei Belean
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Eden Xue
- Division of Rheumatology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Benjamin Cisneros
- Division of Rheumatology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Elisha D. O. Roberson
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Division of Rheumatology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States
| | - Michael A. Paley
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Tarin M. Bigley
- Division of Rheumatology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
2
|
Torma G, Tombácz D, Csabai Z, Almsarrhad IAA, Nagy GÁ, Kakuk B, Gulyás G, Spires LM, Gupta I, Fülöp Á, Dörmő Á, Prazsák I, Mizik M, Dani VÉ, Csányi V, Harangozó Á, Zádori Z, Toth Z, Boldogkői Z. Identification of herpesvirus transcripts from genomic regions around the replication origins. Sci Rep 2023; 13:16395. [PMID: 37773348 PMCID: PMC10541914 DOI: 10.1038/s41598-023-43344-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023] Open
Abstract
Long-read sequencing (LRS) techniques enable the identification of full-length RNA molecules in a single run eliminating the need for additional assembly steps. LRS research has exposed unanticipated transcriptomic complexity in various organisms, including viruses. Herpesviruses are known to produce a range of transcripts, either close to or overlapping replication origins (Oris) and neighboring genes related to transcription or replication, which possess confirmed or potential regulatory roles. In our research, we employed both new and previously published LRS and short-read sequencing datasets to uncover additional Ori-proximal transcripts in nine herpesviruses from all three subfamilies (alpha, beta and gamma). We discovered novel long non-coding RNAs, as well as splice and length isoforms of mRNAs. Moreover, our analysis uncovered an intricate network of transcriptional overlaps within the examined genomic regions. We demonstrated that herpesviruses display distinct patterns of transcriptional overlaps in the vicinity of or at the Oris. Our findings suggest the existence of a 'super regulatory center' in the genome of alphaherpesviruses that governs the initiation of both DNA replication and global transcription through multilayered interactions among the molecular machineries.
Collapse
Affiliation(s)
- Gábor Torma
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Dóra Tombácz
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- MTA -SZTE Lendület GeMiNI Research Group, University of Szeged, Szeged, Hungary
| | - Zsolt Csabai
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- MTA -SZTE Lendület GeMiNI Research Group, University of Szeged, Szeged, Hungary
| | - Islam A A Almsarrhad
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Gergely Ármin Nagy
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Balázs Kakuk
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- MTA -SZTE Lendület GeMiNI Research Group, University of Szeged, Szeged, Hungary
| | - Gábor Gulyás
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- MTA -SZTE Lendület GeMiNI Research Group, University of Szeged, Szeged, Hungary
| | - Lauren McKenzie Spires
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, USA
| | - Ishaan Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, India
| | - Ádám Fülöp
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Ákos Dörmő
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- MTA -SZTE Lendület GeMiNI Research Group, University of Szeged, Szeged, Hungary
| | - István Prazsák
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- MTA -SZTE Lendület GeMiNI Research Group, University of Szeged, Szeged, Hungary
| | - Máté Mizik
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Virág Éva Dani
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Viktor Csányi
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Ákos Harangozó
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Zoltán Zádori
- HUN-REN Veterinary Medical Research Institute HU, Budapest, Hungary
| | - Zsolt Toth
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, USA
| | - Zsolt Boldogkői
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary.
- MTA -SZTE Lendület GeMiNI Research Group, University of Szeged, Szeged, Hungary.
| |
Collapse
|
3
|
Tombácz D, Kakuk B, Torma G, Csabai Z, Gulyás G, Tamás V, Zádori Z, Jefferson VA, Meyer F, Boldogkői Z. In-Depth Temporal Transcriptome Profiling of an Alphaherpesvirus Using Nanopore Sequencing. Viruses 2022; 14:v14061289. [PMID: 35746760 PMCID: PMC9229804 DOI: 10.3390/v14061289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 12/10/2022] Open
Abstract
In this work, a long-read sequencing (LRS) technique based on the Oxford Nanopore Technology MinION platform was used for quantifying and kinetic characterization of the poly(A) fraction of bovine alphaherpesvirus type 1 (BoHV-1) lytic transcriptome across a 12-h infection period. Amplification-based LRS techniques frequently generate artefactual transcription reads and are biased towards the production of shorter amplicons. To avoid these undesired effects, we applied direct cDNA sequencing, an amplification-free technique. Here, we show that a single promoter can produce multiple transcription start sites whose distribution patterns differ among the viral genes but are similar in the same gene at different timepoints. Our investigations revealed that the circ gene is expressed with immediate–early (IE) kinetics by utilizing a special mechanism based on the use of the promoter of another IE gene (bicp4) for the transcriptional control. Furthermore, we detected an overlap between the initiation of DNA replication and the transcription from the bicp22 gene, which suggests an interaction between the two molecular machineries. This study developed a generally applicable LRS-based method for the time-course characterization of transcriptomes of any organism.
Collapse
Affiliation(s)
- Dóra Tombácz
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Somogyi u. 4, 6720 Szeged, Hungary; (D.T.); (B.K.); (G.T.); (Z.C.); (G.G.)
| | - Balázs Kakuk
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Somogyi u. 4, 6720 Szeged, Hungary; (D.T.); (B.K.); (G.T.); (Z.C.); (G.G.)
| | - Gábor Torma
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Somogyi u. 4, 6720 Szeged, Hungary; (D.T.); (B.K.); (G.T.); (Z.C.); (G.G.)
| | - Zsolt Csabai
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Somogyi u. 4, 6720 Szeged, Hungary; (D.T.); (B.K.); (G.T.); (Z.C.); (G.G.)
| | - Gábor Gulyás
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Somogyi u. 4, 6720 Szeged, Hungary; (D.T.); (B.K.); (G.T.); (Z.C.); (G.G.)
| | - Vivien Tamás
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungária krt. 21, 1143 Budapest, Hungary; (V.T.); (Z.Z.)
| | - Zoltán Zádori
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungária krt. 21, 1143 Budapest, Hungary; (V.T.); (Z.Z.)
| | - Victoria A. Jefferson
- Department of Biochemistry & Molecular Biology, Entomology & Plant Pathology, Mississippi State University, 408 Dorman P.O. Box 9655, 32 Creelman St., Starkville, MS 39762, USA; (V.A.J.); (F.M.)
| | - Florencia Meyer
- Department of Biochemistry & Molecular Biology, Entomology & Plant Pathology, Mississippi State University, 408 Dorman P.O. Box 9655, 32 Creelman St., Starkville, MS 39762, USA; (V.A.J.); (F.M.)
| | - Zsolt Boldogkői
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Somogyi u. 4, 6720 Szeged, Hungary; (D.T.); (B.K.); (G.T.); (Z.C.); (G.G.)
- Correspondence:
| |
Collapse
|
4
|
Fülöp Á, Torma G, Moldován N, Szenthe K, Bánáti F, Almsarrhad IAA, Csabai Z, Tombácz D, Minárovits J, Boldogkői Z. Integrative profiling of Epstein-Barr virus transcriptome using a multiplatform approach. Virol J 2022; 19:7. [PMID: 34991630 PMCID: PMC8740505 DOI: 10.1186/s12985-021-01734-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/20/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Epstein-Barr virus (EBV) is an important human pathogenic gammaherpesvirus with carcinogenic potential. The EBV transcriptome has previously been analyzed using both Illumina-based short read-sequencing and Pacific Biosciences RS II-based long-read sequencing technologies. Since the various sequencing methods have distinct strengths and limitations, the use of multiplatform approaches have proven to be valuable. The aim of this study is to provide a more complete picture on the transcriptomic architecture of EBV. METHODS In this work, we apply the Oxford Nanopore Technologies MinION (long-read sequencing) platform for the generation of novel transcriptomic data, and integrate these with other's data generated by another LRS approach, Pacific BioSciences RSII sequencing and Illumina CAGE-Seq and Poly(A)-Seq approaches. Both amplified and non-amplified cDNA sequencings were applied for the generation of sequencing reads, including both oligo-d(T) and random oligonucleotide-primed reverse transcription. EBV transcripts are identified and annotated using the LoRTIA software suite developed in our laboratory. RESULTS This study detected novel genes embedded into longer host genes containing 5'-truncated in-frame open reading frames, which potentially encode N-terminally truncated proteins. We also detected a number of novel non-coding RNAs and transcript length isoforms encoded by the same genes but differing in their start and/or end sites. This study also reports the discovery of novel splice isoforms, many of which may represent altered coding potential, and of novel replication-origin-associated transcripts. Additionally, novel mono- and multigenic transcripts were identified. An intricate meshwork of transcriptional overlaps was revealed. CONCLUSIONS An integrative approach applying multi-technique sequencing technologies is suitable for reliable identification of complex transcriptomes because each techniques has different advantages and limitations, and the they can be used for the validation of the results obtained by a particular approach.
Collapse
Affiliation(s)
- Ádám Fülöp
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Somogyi B. u. 4., Szeged, 6720 Hungary
| | - Gábor Torma
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Somogyi B. u. 4., Szeged, 6720 Hungary
| | - Norbert Moldován
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Somogyi B. u. 4., Szeged, 6720 Hungary
| | - Kálmán Szenthe
- Carlsbad Research Organization Ltd., Szabadság u. 2., Újrónafő, 9244 Hungary
| | - Ferenc Bánáti
- RT-Europe Research Center, Vár tér 2., Mosonmagyaróvár, 9200 Hungary
| | - Islam A. A. Almsarrhad
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Somogyi B. u. 4., Szeged, 6720 Hungary
| | - Zsolt Csabai
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Somogyi B. u. 4., Szeged, 6720 Hungary
| | - Dóra Tombácz
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Somogyi B. u. 4., Szeged, 6720 Hungary
| | - János Minárovits
- Department of Oral Biology and Experimental Dental Research, University of Szeged, Tisza Lajos krt. 64, Szeged, 6720 Hungary
| | - Zsolt Boldogkői
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Somogyi B. u. 4., Szeged, 6720 Hungary
| |
Collapse
|
5
|
Torma G, Tombácz D, Csabai Z, Göbhardter D, Deim Z, Snyder M, Boldogkői Z. An Integrated Sequencing Approach for Updating the Pseudorabies Virus Transcriptome. Pathogens 2021; 10:pathogens10020242. [PMID: 33672563 PMCID: PMC7924054 DOI: 10.3390/pathogens10020242] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 01/06/2023] Open
Abstract
In the last couple of years, the implementation of long-read sequencing (LRS) technologies for transcriptome profiling has uncovered an extreme complexity of viral gene expression. In this study, we carried out a systematic analysis on the pseudorabies virus transcriptome by combining our current data obtained by using Pacific Biosciences Sequel and Oxford Nanopore Technologies MinION sequencing with our earlier data generated by other LRS and short-read sequencing techniques. As a result, we identified a number of novel genes, transcripts, and transcript isoforms, including splice and length variants, and also confirmed earlier annotated RNA molecules. One of the major findings of this study is the discovery of a large number of 5′-truncations of larger putative mRNAs being 3′-co-terminal with canonical mRNAs of PRV. A large fraction of these putative RNAs contain in-frame ATGs, which might initiate translation of N-terminally truncated polypeptides. Our analyses indicate that CTO-S, a replication origin-associated RNA molecule is expressed at an extremely high level. This study demonstrates that the PRV transcriptome is much more complex than previously appreciated.
Collapse
Affiliation(s)
- Gábor Torma
- Department of Medical Biology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary; (G.T.); (D.T.); (Z.C.); (D.G.)
| | - Dóra Tombácz
- Department of Medical Biology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary; (G.T.); (D.T.); (Z.C.); (D.G.)
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA 94304, USA;
| | - Zsolt Csabai
- Department of Medical Biology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary; (G.T.); (D.T.); (Z.C.); (D.G.)
| | - Dániel Göbhardter
- Department of Medical Biology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary; (G.T.); (D.T.); (Z.C.); (D.G.)
| | - Zoltán Deim
- Department of Biotechnology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary;
| | - Michael Snyder
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA 94304, USA;
| | - Zsolt Boldogkői
- Department of Medical Biology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary; (G.T.); (D.T.); (Z.C.); (D.G.)
- Correspondence:
| |
Collapse
|
6
|
Long-read assays shed new light on the transcriptome complexity of a viral pathogen. Sci Rep 2020; 10:13822. [PMID: 32796917 PMCID: PMC7427789 DOI: 10.1038/s41598-020-70794-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 08/03/2020] [Indexed: 12/21/2022] Open
Abstract
Characterization of global transcriptomes using conventional short-read sequencing is challenging due to the insensitivity of these platforms to transcripts isoforms, multigenic RNA molecules, and transcriptional overlaps. Long-read sequencing (LRS) can overcome these limitations by reading full-length transcripts. Employment of these technologies has led to the redefinition of transcriptional complexities in reported organisms. In this study, we applied LRS platforms from Pacific Biosciences and Oxford Nanopore Technologies to profile the vaccinia virus (VACV) transcriptome. We performed cDNA and direct RNA sequencing analyses and revealed an extremely complex transcriptional landscape of this virus. In particular, VACV genes produce large numbers of transcript isoforms that vary in their start and termination sites. A significant fraction of VACV transcripts start or end within coding regions of neighbouring genes. This study provides new insights into the transcriptomic profile of this viral pathogen.
Collapse
|
7
|
Tombácz D, Moldován N, Balázs Z, Gulyás G, Csabai Z, Boldogkői M, Snyder M, Boldogkői Z. Multiple Long-Read Sequencing Survey of Herpes Simplex Virus Dynamic Transcriptome. Front Genet 2019; 10:834. [PMID: 31608102 PMCID: PMC6769088 DOI: 10.3389/fgene.2019.00834] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022] Open
Abstract
Long-read sequencing (LRS) has become increasingly important in RNA research due to its strength in resolving complex transcriptomic architectures. In this regard, currently two LRS platforms have demonstrated adequate performance: the Single Molecule Real-Time Sequencing by Pacific Biosciences (PacBio) and the nanopore sequencing by Oxford Nanopore Technologies (ONT). Even though these techniques produce lower coverage and are more error prone than short-read sequencing, they continue to be more successful in identifying polycistronic RNAs, transcript isoforms including splice and transcript end variants, as well as transcript overlaps. Recent reports have successfully applied LRS for the investigation of the transcriptome of viruses belonging to various families. These studies have substantially increased the number of previously known viral RNA molecules. In this work, we used the Sequel and MinION technique from PacBio and ONT, respectively, to characterize the lytic transcriptome of the herpes simplex virus type 1 (HSV-1). In most samples, we analyzed the poly(A) fraction of the transcriptome, but we also performed random oligonucleotide-based sequencing. Besides cDNA sequencing, we also carried out native RNA sequencing. Our investigations identified more than 2,300 previously undetected transcripts, including coding, and non-coding RNAs, multi-splice transcripts, as well as polycistronic and complex transcripts. Furthermore, we found previously unsubstantiated transcriptional start sites, polyadenylation sites, and splice sites. A large number of novel transcriptional overlaps were also detected. Random-primed sequencing revealed that each convergent gene pair produces non-polyadenylated read-through RNAs overlapping the partner genes. Furthermore, we identified novel replication-associated transcripts overlapping the HSV-1 replication origins, and novel LAT variants with very long 5' regions, which are co-terminal with the LAT-0.7kb transcript. Overall, our results demonstrated that the HSV-1 transcripts form an extremely complex pattern of overlaps, and that entire viral genome is transcriptionally active. In most viral genes, if not in all, both DNA strands are expressed.
Collapse
Affiliation(s)
- Dóra Tombácz
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Norbert Moldován
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Zsolt Balázs
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Gábor Gulyás
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Zsolt Csabai
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Miklós Boldogkői
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Michael Snyder
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, United States
| | - Zsolt Boldogkői
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|