1
|
Peña-Montenegro TD, Kleindienst S, Allen AE, Eren AM, McCrow JP, Arnold J, Joye SB. Metatranscriptomic response of deep ocean microbial populations to infusions of oil and/or synthetic chemical dispersant. Appl Environ Microbiol 2024; 90:e0108324. [PMID: 39041797 PMCID: PMC11337851 DOI: 10.1128/aem.01083-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 07/24/2024] Open
Abstract
Oil spills are a frequent perturbation to the marine environment that has rapid and significant impacts on the local microbiome. Previous studies have shown that exposure to synthetic dispersant alone did not enhance heterotrophic microbial activity or oxidation rates of specific hydrocarbon components but increased the abundance of some taxa (e.g., Colwellia). In contrast, exposure to oil, but not dispersants, increased the abundance of other taxa (e.g., Marinobacter) and stimulated hydrocarbon oxidation rates. Here, we advance these findings by interpreting metatranscriptomic data from this experiment to explore how and why specific components of the microbial community responded to distinct organic carbon exposure regimes. Dispersant alone was selected for a unique community and for dominant organisms that reflected treatment- and time-dependent responses. Dispersant amendment also led to diverging functional profiles among the different treatments. Similarly, oil alone was selected for a community that was distinct from treatments amended with dispersants. The presence of oil and dispersants with added nutrients led to substantial differences in microbial responses, likely suggesting increased fitness driven by the presence of additional inorganic nutrients. The oil-only additions led to a marked increase in the expression of phages, prophages, transposable elements, and plasmids (PPTEPs), suggesting that aspects of microbial community response to oil are driven by the "mobilome," potentially through viral-associated regulation of metabolic pathways in ciliates and flagellates that would otherwise throttle the microbial community through grazing.IMPORTANCEMicrocosm experiments simulated the April 2010 Deepwater Horizon oil spill by applying oil and synthetic dispersants (Corexit EC9500A and EC9527A) to deep ocean water samples. The exposure regime revealed severe negative alterations in the treatments' heterotrophic microbial activity and hydrocarbon oxidation rates. We expanded these findings by exploring metatranscriptomic signatures of the microbial communities during the chemical amendments in the microcosm experiments. Here we report how dominant organisms were uniquely associated with treatment- and time-dependent trajectories during the exposure regimes; nutrient availability was a significant factor in driving changes in metatranscriptomic responses. Remarkable signals associated with PPTEPs showed the potential role of mobilome and viral-associated survival responses. These insights underscore the time-dependent environmental perturbations of fragile marine environments under oil and anthropogenic stress.
Collapse
Affiliation(s)
- Tito D. Peña-Montenegro
- Department of Marine Sciences, University of Georgia, Athens, Georgia, USA
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, USA
- Grupo de Investigación y Desarrollo en Ciencias, Tecnología e Innovación (BioGRID), Sociedad de Doctores e Investigadores de Colombia (SoPhIC), Bogotá, Colombia
| | - Sara Kleindienst
- Department of Marine Sciences, University of Georgia, Athens, Georgia, USA
| | - Andrew E. Allen
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, California, USA
- Integrative Oceanography Division, Scripps Institution of Oceanography, UC San Diego, La Jolla, California, USA
| | - A. Murat Eren
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - John P. McCrow
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, California, USA
| | - Jonathan Arnold
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, USA
- Department of Genetics, University of Georgia, Athens, Georgia, USA
| | - Samantha B. Joye
- Department of Marine Sciences, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
2
|
Herbert A. The ancient Z-DNA and Z-RNA specific Zα fold has evolved modern roles in immunity and transcription through the natural selection of flipons. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240080. [PMID: 39092141 PMCID: PMC11293857 DOI: 10.1098/rsos.240080] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/29/2024] [Accepted: 05/08/2024] [Indexed: 08/04/2024]
Abstract
The Zα fold specifically binds to both Z-DNA and Z-RNA, left-handed nucleic acid structures that form under physiological conditions and are encoded by flipons. I trace the Zα fold back to unicellular organisms representing all three domains of life and to the realm of giant nucleocytoplasmic DNA viruses (NCVs). The canonical Zα fold is present in the earliest known holozoan unicellular symbiont Capsaspora owczarzaki and persists in vertebrates and some invertebrates, but not in plants or fungi. In metazoans, starting with porifera, Zα is incorporated into the double-stranded RNA editing enzyme ADAR and reflects an early symbiont relationship with NCV. In vertebrates, Zα is also present in ZBP1 and PKZ proteins that recognize host-derived Z-RNAs to defend against modern-day viruses. A related Zα fold, also likely to bind Z-DNA, is present in proteins thought to modulate gene expression, including a subset of prokaryote arsR proteins and the p15 (PC4) family present in algae. Other Zα variants that probably play a more general role in the reinitiation of transcription include the archaeal and human transcription factor E and the human RNA polymerase 3 subunit C proteins. The roles in immunity and transcription underlie the natural selection of flipons.
Collapse
Affiliation(s)
- Alan Herbert
- Discovery, InsideOutBio, 42 8th Street, Charlestown, MA02129, USA
| |
Collapse
|
3
|
Tokarz-Deptuła B, Chrzanowska S, Baraniecki Ł, Gurgacz N, Stosik M, Sobolewski J, Deptuła W. Virophages, Satellite Viruses, Virophage Replication and Its Effects and Virophage Defence Mechanisms for Giant Virus Hosts and Giant Virus Defence Systems against Virophages. Int J Mol Sci 2024; 25:5878. [PMID: 38892066 PMCID: PMC11172284 DOI: 10.3390/ijms25115878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
In this paper, the characteristics of 40 so far described virophages-parasites of giant viruses-are given, and the similarities and differences between virophages and satellite viruses, which also, like virophages, require helper viruses for replication, are described. The replication of virophages taking place at a specific site-the viral particle factory of giant viruses-and its consequences are presented, and the defence mechanisms of virophages for giant virus hosts, as a protective action for giant virus hosts-protozoa and algae-are approximated. The defence systems of giant viruses against virophages were also presented, which are similar to the CRISPR/Cas defence system found in bacteria and in Archea. These facts, and related to the very specific biological features of virophages (specific site of replication, specific mechanisms of their defensive effects for giant virus hosts, defence systems in giant viruses against virophages), indicate that virophages, and their host giant viruses, are biological objects, forming a 'novelty' in biology.
Collapse
Affiliation(s)
| | - Sara Chrzanowska
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland (Ł.B.)
| | - Łukasz Baraniecki
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland (Ł.B.)
| | - Natalia Gurgacz
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland (Ł.B.)
| | - Michał Stosik
- Institute of Biological Science, Faculty of Biological Sciences, University of Zielona Góra, 65-516 Zielona Góra, Poland;
| | - Jarosław Sobolewski
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland;
| | - Wiesław Deptuła
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland;
| |
Collapse
|
4
|
Tokarz-Deptuła B, Chrzanowska S, Gurgacz N, Stosik M, Deptuła W. Virophages-Known and Unknown Facts. Viruses 2023; 15:1321. [PMID: 37376621 PMCID: PMC10301787 DOI: 10.3390/v15061321] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
The paper presents virophages, which, like their host, giant viruses, are "new" infectious agents whose role in nature, including mammalian health, is important. Virophages, along with their protozoan and algal hosts, are found in fresh inland waters and oceanic and marine waters, including thermal waters and deep-sea vents, as well as in soil, plants, and in humans and animals (ruminants). Representing "superparasitism", almost all of the 39 described virophages (except Zamilon) interact negatively with giant viruses by affecting their replication and morphogenesis and their "adaptive immunity". This causes them to become regulators and, at the same time, defenders of the host of giant viruses protozoa and algae, which are organisms that determine the homeostasis of the aquatic environment. They are classified in the family Lavidaviridae with two genus (Sputnikovirus, Mavirus). However, in 2023, a proposal was presented that they should form the class Maveriviricetes, with four orders and seven families. Their specific structure, including their microsatellite (SSR-Simple Sequence Repeats) and the CVV (cell-virus-virophage, or transpovirion) system described with them, as well as their function, makes them, together with the biological features of giant viruses, form the basis for discussing the existence of a fourth domain in addition to Bacteria, Archaea, and Eukaryota. The paper also presents the hypothetical possibility of using them as a vector for vaccine antigens.
Collapse
Affiliation(s)
| | - Sara Chrzanowska
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland
| | - Natalia Gurgacz
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland
| | - Michał Stosik
- Institute of Biological Science, Faculty of Biological Sciences, University of Zielona Góra, 65-417 Zielona Góra, Poland
| | - Wiesław Deptuła
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University of Toruń, 87-100 Toruń, Poland
| |
Collapse
|
5
|
Pargin E, Roach MJ, Skye A, Papudeshi B, Inglis LK, Mallawaarachchi V, Grigson SR, Harker C, Edwards RA, Giles SK. The human gut virome: composition, colonization, interactions, and impacts on human health. Front Microbiol 2023; 14:963173. [PMID: 37293229 PMCID: PMC10244655 DOI: 10.3389/fmicb.2023.963173] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
The gut virome is an incredibly complex part of the gut ecosystem. Gut viruses play a role in many disease states, but it is unknown to what extent the gut virome impacts everyday human health. New experimental and bioinformatic approaches are required to address this knowledge gap. Gut virome colonization begins at birth and is considered unique and stable in adulthood. The stable virome is highly specific to each individual and is modulated by varying factors such as age, diet, disease state, and use of antibiotics. The gut virome primarily comprises bacteriophages, predominantly order Crassvirales, also referred to as crAss-like phages, in industrialized populations and other Caudoviricetes (formerly Caudovirales). The stability of the virome's regular constituents is disrupted by disease. Transferring the fecal microbiome, including its viruses, from a healthy individual can restore the functionality of the gut. It can alleviate symptoms of chronic illnesses such as colitis caused by Clostridiodes difficile. Investigation of the virome is a relatively novel field, with new genetic sequences being published at an increasing rate. A large percentage of unknown sequences, termed 'viral dark matter', is one of the significant challenges facing virologists and bioinformaticians. To address this challenge, strategies include mining publicly available viral datasets, untargeted metagenomic approaches, and utilizing cutting-edge bioinformatic tools to quantify and classify viral species. Here, we review the literature surrounding the gut virome, its establishment, its impact on human health, the methods used to investigate it, and the viral dark matter veiling our understanding of the gut virome.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Sarah K. Giles
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
6
|
Nair A, Ghugare GS, Khairnar K. An Appraisal of Bacteriophage Isolation Techniques from Environment. MICROBIAL ECOLOGY 2022; 83:519-535. [PMID: 34136953 DOI: 10.1007/s00248-021-01782-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
Researchers have recently renewed interest in bacteriophages. Being valuable models for the study of eukaryotic viruses, and more importantly, natural killers of bacteria, bacteriophages are being tapped for their potential role in multiple applications. Bacteriophages are also being increasingly sought for bacteriophage therapy due to rising antimicrobial resistance among pathogens. Reports show that there is an increasing trend in therapeutic application of natural bacteriophages, genetically engineered bacteriophages, and bacteriophage-encoded products as antimicrobial agents. In view of these applications, the isolation and characterization of bacteriophages from the environment has caught attention. In this review, various methods for isolation of bacteriophages from environmental sources like water, soil, and air are comprehensively described. The review also draws attention towards a handful on-field bacteriophage isolation techniques and the need for their further rapid development.
Collapse
Affiliation(s)
- Aparna Nair
- Environmental Virology Cell, Council of Scientific and Industrial Research-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Gaurav S Ghugare
- Environmental Virology Cell, Council of Scientific and Industrial Research-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Krishna Khairnar
- Environmental Virology Cell, Council of Scientific and Industrial Research-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
7
|
Yarzábal LA, Salazar LMB, Batista-García RA. Climate change, melting cryosphere and frozen pathogens: Should we worry…? ENVIRONMENTAL SUSTAINABILITY (SINGAPORE) 2021; 4:489-501. [PMID: 38624658 PMCID: PMC8164958 DOI: 10.1007/s42398-021-00184-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 05/12/2021] [Accepted: 05/15/2021] [Indexed: 11/21/2022]
Abstract
Permanently frozen environments (glaciers, permafrost) are considered as natural reservoirs of huge amounts of microorganisms, mostly dormant, including human pathogens. Due to global warming, which increases the rate of ice-melting, approximately 4 × 1021 of these microorganisms are released annually from their frozen confinement and enter natural ecosystems, in close proximity to human settlements. Some years ago, the hypothesis was put forward that this massive release of potentially-pathogenic microbes-many of which disappeared from the face of the Earth thousands and even millions of years ago-could give rise to epidemics. The recent anthrax outbreaks that occurred in Siberia, and the presence of bacterial and viral pathogens in glaciers worldwide, seem to confirm this hypothesis. In that context, the present review summarizes the currently available scientific evidence that allows us to imagine a near future in which epidemic outbreaks, similar to the abovementioned, could occur as a consequence of the resurrection and release of microbes from glaciers and permafrost. Supplementary Information The online version of this article (10.1007/s42398-021-00184-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Luis Andrés Yarzábal
- Unidad de Salud y Bienestar, Universidad Católica de Cuenca, Av. Las Américas and Calle Humboldt, Cuenca, Ecuador
- Centro de Investigación, Innovación y Transferencia de Tecnología (CIITT), Universidad Católica de Cuenca, Campus Miracielos, Ricaurte, Ecuador
| | - Lenys M. Buela Salazar
- Unidad de Salud y Bienestar, Universidad Católica de Cuenca, Av. Las Américas and Calle Humboldt, Cuenca, Ecuador
| | - Ramón Alberto Batista-García
- Centro de Investigación en Dinámica Celular, Instituto de Investigaciones en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos Mexico
| |
Collapse
|