1
|
Wu J, Zhang J, Zhou J, Luo Y, Wang X, Yang R, Zhu J, Jia M, Zhang L, Fu L, Yan N, Wang Y. Prevalence and Genetic Variation Investigation of the Pseudorabies Virus in Southwest China. Animals (Basel) 2024; 14:3103. [PMID: 39518826 PMCID: PMC11544765 DOI: 10.3390/ani14213103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/13/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
In 2022, a significant PRV outbreak in a southwestern China pig farm led to a high incidence of sow abortion. A serological analysis using gE antigen-based ELISA revealed a high prevalence (69.30%) of PRV gE antibodies among the affected pigs, with a significant variation across different pig populations (1.11-76.12%). We collected additional 5552 pig serum samples and 580 pig cerebrospinal fluid (CSF) samples from various pig farms in Southwest China between 2022 and 2024. The seropositive rates for PRV gE antibodies ranged from 2.36% and 8.65% in the serum samples, while the positive detection rates for the PRV gE gene in the cerebrospinal fluid samples, as determined by PCR, were between 1.06% and 2.36%. The PCR analysis and sequencing of the PRV gB, gC, gE, and TK genes from eight randomly selected samples identified two distinct strains, CQ1 and CQ2. CQ1's gC gene showed similarity to the vaccine strain Bartha, while the other genes aligned with Chinese classical strains, suggesting its potential genetic recombination. CQ2 aligned with the Chinese classical strain SC. Although the overall PRV infection in Southwest China's pig farms is relatively low, occasional outbreaks with high positivity rates are observed. These findings highlight the necessity for increased surveillance and stringent control measures to safeguard the swine industry.
Collapse
Affiliation(s)
- Jiaqi Wu
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (J.W.); (J.Z.); (Y.L.); (X.W.); (M.J.); (L.Z.)
| | - Juan Zhang
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (J.W.); (J.Z.); (Y.L.); (X.W.); (M.J.); (L.Z.)
| | - Jun Zhou
- Sichuan Boce Testing Technology Co., Ltd., Chengdu 610023, China;
| | - Yi Luo
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (J.W.); (J.Z.); (Y.L.); (X.W.); (M.J.); (L.Z.)
| | - Xinrong Wang
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (J.W.); (J.Z.); (Y.L.); (X.W.); (M.J.); (L.Z.)
| | - Rui Yang
- Chongqing Academy of Animal Science, Chongqing 408599, China (L.F.)
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Junhai Zhu
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (J.W.); (J.Z.); (Y.L.); (X.W.); (M.J.); (L.Z.)
| | - Meiyu Jia
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (J.W.); (J.Z.); (Y.L.); (X.W.); (M.J.); (L.Z.)
| | - Longxiang Zhang
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (J.W.); (J.Z.); (Y.L.); (X.W.); (M.J.); (L.Z.)
| | - Lizhi Fu
- Chongqing Academy of Animal Science, Chongqing 408599, China (L.F.)
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Nan Yan
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (J.W.); (J.Z.); (Y.L.); (X.W.); (M.J.); (L.Z.)
| | - Yue Wang
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (J.W.); (J.Z.); (Y.L.); (X.W.); (M.J.); (L.Z.)
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| |
Collapse
|
2
|
Chen L, Zhang X, Shao G, Shao Y, Hu Z, Feng K, Xie Z, Li H, Chen W, Lin W, Yuan H, Wang H, Fu J, Xie Q. Construction and Evaluation of Recombinant Pseudorabies Virus Expressing African Swine Fever Virus Antigen Genes. Front Vet Sci 2022; 9:832255. [PMID: 35498728 PMCID: PMC9043850 DOI: 10.3389/fvets.2022.832255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
African swine fever (ASF) is a highly contact infectious disease caused by the African swine fever virus (ASFV). The extremely complex structure and infection mechanism make it difficult to control the spread of ASFV and develop the vaccine. The ASFV genome is huge with many antigenic genes. Among them, CP204L (p30), CP530R (pp62), E183L (p54), B646L (p72), and EP402R (CD2v) are involved in the process of the virus cycle, with strong immunogenicity and the ability to induce the body to produce neutralizing antibodies. In this study, the recombinant virus rBartha-K61-pASFV that expresses the above ASFV antigen genes was constructed by Red/ET recombineering technology using pseudorabies virus (PRV) vaccine strain Bartha-K61. Western blot analysis showed that the ASFV antigen gene was expressed and the recombinant virus showed good genetic stability and proliferation characteristics in 15 continuous generations on porcine kidney (PK15) cells. The results of immunoassay of piglets and mice showed that rBartha-K61-pASFV had good immunogenicity and could induce higher antibody levels in the body. Therefore, PRV was a promising viral vector for expressing the ASFV antigen gene, and all the experiments in this study laid a foundation for the further development of a new viral vector vaccine of ASFV.
Collapse
Affiliation(s)
- Liyi Chen
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
| | - Xinheng Zhang
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Guanming Shao
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
| | - Yangyang Shao
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
| | - Zezhong Hu
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
| | - Keyu Feng
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zi Xie
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
| | - Hongxin Li
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Weiguo Chen
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Wencheng Lin
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Hengxing Yuan
- State Key Laboratory of Microbial Technology, Helmholtz International Lab for Anti-infectives, Institute of Microbial Technology, Shandong University–Helmholtz Institute of Biotechnology, Shandong University, Qingdao, China
| | - Hailong Wang
- State Key Laboratory of Microbial Technology, Helmholtz International Lab for Anti-infectives, Institute of Microbial Technology, Shandong University–Helmholtz Institute of Biotechnology, Shandong University, Qingdao, China
| | - Jun Fu
- State Key Laboratory of Microbial Technology, Helmholtz International Lab for Anti-infectives, Institute of Microbial Technology, Shandong University–Helmholtz Institute of Biotechnology, Shandong University, Qingdao, China
| | - Qingmei Xie
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- *Correspondence: Qingmei Xie
| |
Collapse
|