1
|
Wang H, Tian J, Zhao J, Zhao Y, Yang H, Zhang G. Current Status of Poultry Recombinant Virus Vector Vaccine Development. Vaccines (Basel) 2024; 12:630. [PMID: 38932359 PMCID: PMC11209050 DOI: 10.3390/vaccines12060630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/22/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Inactivated and live attenuated vaccines are the mainstays of preventing viral poultry diseases. However, the development of recombinant DNA technology in recent years has enabled the generation of recombinant virus vector vaccines, which have the advantages of preventing multiple diseases simultaneously and simplifying the vaccination schedule. More importantly, some can induce a protective immune response in the presence of maternal antibodies and offer long-term immune protection. These advantages compensate for the shortcomings of traditional vaccines. This review describes the construction and characterization of primarily poultry vaccine vectors, including fowl poxvirus (FPV), fowl adenovirus (FAdV), Newcastle disease virus (NDV), Marek's disease virus (MDV), and herpesvirus of turkey (HVT). In addition, the pathogens targeted and the immunoprotective effect of different poultry recombinant virus vector vaccines are also presented. Finally, this review discusses the challenges in developing vector vaccines and proposes strategies for improving immune efficacy.
Collapse
Affiliation(s)
- Haoran Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (H.W.); (J.T.); (J.Z.); (Y.Z.); (H.Y.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jiaxin Tian
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (H.W.); (J.T.); (J.Z.); (Y.Z.); (H.Y.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jing Zhao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (H.W.); (J.T.); (J.Z.); (Y.Z.); (H.Y.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Ye Zhao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (H.W.); (J.T.); (J.Z.); (Y.Z.); (H.Y.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Huiming Yang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (H.W.); (J.T.); (J.Z.); (Y.Z.); (H.Y.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Guozhong Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (H.W.); (J.T.); (J.Z.); (Y.Z.); (H.Y.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Xu T, Xiong T, Xie W, Wu J, Liu X, Li G, Lv Y, Li L, Yang Z, Wang H, Liu D, Chen R. Construction and Evaluation of the Immunogenicity and Protective Efficacy of Recombinant Replication-Deficient Human Adenovirus-5 Expressing Genotype VII Newcastle Disease Virus F Protein and Infectious Bursal Disease Virus VP2 Protein. Vaccines (Basel) 2023; 11:1051. [PMID: 37376440 DOI: 10.3390/vaccines11061051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/18/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Newcastle disease (ND) and infectious bursal disease (IBD) are two key infectious diseases that significantly threaten the health of the poultry industry. Although existing vaccinations can effectively prevent and treat these two diseases through multiple immunizations, frequent immunization stresses significantly impact chicken growth. In this study, three recombinant adenoviruses, rAd5-F expressing the NDV (genotype VII) F protein, rAd5-VP2 expressing the IBDV VP2 protein, and rAd5-VP2-F2A-F co-expressing F and VP2 proteins, were constructed using the AdEasy system. The F and VP2 genes of the recombinant adenoviruses could be transcribed and expressed normally in HEK293A cells as verified by RT-PCR and Western blot. The three recombinant viruses were shown to have similar growth kinetics as rAd5-EGFP. Compared with the PBS and rAd5-EGFP groups, SPF chickens immunized with recombinant adenoviruses produced higher antibody levels, more significant lymphocyte proliferation, and significantly higher CD4+/CD3+ and CD8+/CD3+ cells in peripheral blood. The survival rate of SPF chickens immunized with rAd5-F and rAd5-VP2-F2A-F after the challenge with DHN3 was 100%, and 86% of SPF chickens showed no viral shedding at 7 dpc. The survival rate of SPF chickens immunized with rAd5-VP2 and rAd5-VP2-F2A-F after the challenge with BC6/85 was 86%. rAd5-VP2 and rAd5-VP2-F2A-F significantly inhibited bursal atrophy and pathological changes compared to the rAd5-EGFP and PBS groups. This study provides evidence that these recombinant adenoviruses have the potential to be developed into safe and effective vaccine candidates for the prevention and control of ND and IBD.
Collapse
Affiliation(s)
- Ting Xu
- Zhaoqing Branch of Guangdong Laboratory of Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China
| | - Ting Xiong
- Zhaoqing Branch of Guangdong Laboratory of Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China
| | - Wenting Xie
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China
| | - Jing Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China
| | - Xiao Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China
| | - Guimin Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China
| | - Yadi Lv
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China
| | - Linyu Li
- Zhaoqing Branch of Guangdong Laboratory of Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
| | - Zekun Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China
| | - Han Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China
| | - Dingxiang Liu
- Zhaoqing Branch of Guangdong Laboratory of Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Ruiai Chen
- Zhaoqing Branch of Guangdong Laboratory of Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China
- Key Laboratory of Biotechnology and Bioproducts Development for Animal Epidemic Prevention, Ministry of Agriculture and Rural Affairs, Zhaoqing 526238, China
- Guangdong Enterprise Key Laboratory of Biotechnology R&D of Veterinary Biologics, Zhaoqing 526238, China
- Zhaoqing Dahuanong Biology Medicine Co., Ltd., Zhaoqing 526238, China
| |
Collapse
|
3
|
Gonçalves ZS, Jesus ON, Lima LKS, Corrêa RX. Responses of Passiflora spp. to cowpea aphid-borne mosaic virus reveal infection in asymptomatic plants and new species with probable immunity. Arch Virol 2021; 166:2419-2434. [PMID: 34132915 DOI: 10.1007/s00705-021-05131-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 04/24/2021] [Indexed: 11/27/2022]
Abstract
Passion fruit woodiness disease (PWD), caused by cowpea aphid-borne mosaic virus (CABMV), produces socioeconomic problems in Brazil. The objectives of this study were to i) evaluate the temporal progression of PWD, ii) identify Passiflora genotypes with resistance to CABMV, and iii) detect virus infection in asymptomatic plants by reverse transcription quantitative polymerase chain reaction (RT-qPCR) in cases where standard RT-PCR detection failed. The experiment was conducted in a greenhouse using 128 genotypes belonging to 12 species and three hybrids (inter- and intraspecific) of Passiflora, evaluated at five time points after inoculation. Progression rates and disease severity were lower in P. cincinnata, P. gibertii, P. miersii, and P. mucronata than in P. edulis, P. alata, Passiflora sp., and hybrids. Of the genotypes tested, 20.31% were resistant, especially the accessions of P. suberosa, P. malacophylla, P. setacea, P. pohlii, and P. bahiensis, which remained asymptomatic throughout the experiment. The absence of symptoms does not imply immunity of plants to the virus, since RT-qPCR analysis confirmed infection by the virus in asymptomatic plants of P. cincinnata, P. gibertii, P. miersii, P. mucronata, P. setacea, P. malacophylla, and P. suberosa. Even after four inoculations, the virus was not detected by RT-qPCR in the upper leaves in plants of the species P. pohlii and P. bahiensis, indicating that these species are probably immune to CABMV.
Collapse
Affiliation(s)
- Zanon Santana Gonçalves
- Departamento de Ciências Biológicas, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz, UESC, Rodovia Jorge Amado, Km 16, Salobrinho, Ilhéus, BA, 45662-900, Brazil
| | - Onildo Nunes Jesus
- Embrapa Mandioca e Fruticultura, Rua Embrapa, s/n, Chapadinha, Caixa Postal 007, Cruz das Almas, BA, 44380-000, Brazil.
| | - Lucas Kennedy Silva Lima
- Embrapa Mandioca e Fruticultura, Rua Embrapa, s/n, Chapadinha, Caixa Postal 007, Cruz das Almas, BA, 44380-000, Brazil
| | - Ronan Xavier Corrêa
- Departamento de Ciências Biológicas, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz, UESC, Rodovia Jorge Amado, Km 16, Salobrinho, Ilhéus, BA, 45662-900, Brazil
| |
Collapse
|
4
|
Genomic characteristics and pathogenicity of a new recombinant strain of porcine reproductive and respiratory syndrome virus. Arch Virol 2021; 166:389-402. [PMID: 33385245 DOI: 10.1007/s00705-020-04917-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/30/2020] [Indexed: 12/19/2022]
Abstract
Recombination is an important phenomenon that accelerates evolution and enriches the genetic diversity of porcine reproductive and respiratory syndrome virus (PRRSV). Recombinant PRRSV isolates sometimes have different genetic backgrounds. In this study, we report a recombinant PRRSV (SD-YL1712) isolated from a pig farm. The genome of SD-YL1712 is 15,014 nucleotides in length, and its nucleotide and amino acid sequence conservation is higher than that of PRRSV strain JXA1 except within the NSP2 region. The NSP2 region of SDYL1712 shares the highest nucleotide (85.9%) and amino acid (84.1%) sequence identity with PRRSV strain NADC30. SD-YL1712 was found to contain a characteristic 131-amino-acid deletion in the NSP2 region. Two recombination breakpoints were detected at nt 2134 and nt 3958 within the NSP2 region, which revealed that SD-YL1712 originated from a recombination event between NADC30-like and HP-PRRSV-derived MLV-like strains. Interestingly, SD-YL1712 had an additional deletion at position 586, similar to that found in strain TJnh1501. Moreover, the pathogenicity of strain SD-YL1712 was found to be similar to that of HP-PRRSV JXA1, which was higher than that of the CH1a strain. Further analysis indicated that SD-YL1712 might be a transitional intermediate in the evolution of TJbd1401 to TJnh1501.
Collapse
|