1
|
Sun Y, Wang Y, Ji L, Zhao Q, Shen Q, Wang X, Liu Y, Ji L, Yang S, Zhang W. Identification and characterization of multiple novel picornaviruses in fecal samples of bar-headed goose. Front Microbiol 2024; 15:1440801. [PMID: 39132136 PMCID: PMC11310119 DOI: 10.3389/fmicb.2024.1440801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/11/2024] [Indexed: 08/13/2024] Open
Abstract
Introduction The bar-headed goose (Anser indicus), one of the most well-known high-altitude birds, is renowned for its adaptation to high-altitude environments. Previous studies have shown that they can be infected with highly pathogenic avian influenza; however, there is currently limited research on other viruses in bar-headed geese. Methods In this study, 10 fecal samples of healthy bar-headed geese were collected, and viral metagenomics method was conducted to identify novel picornaviruses. Results Seven novel picornaviruses were identified in the fecal samples of bar-headed geese. Most of these picornaviruses were genetically different from other currently known viruses in the NCBI dataset. Among them, PICV4 was determined to be a new species belonging to the Anativirus genus, PICV5 and PICV13 were classified as novel species belonging to the Hepatovirus genus, and the remaining four picornaviruses (PICV1, PICV19, PICV21, and PICV22) were identified as part of the Megrivirus A species of the Megrivirus genus. Recombinant analysis indicates that PICV21 was a potential recombinant, and the major and minor parents were PICV1 and PICV22, respectively. Conclusion The findings of this study increase our understanding of the diversity of picornaviruses in bar-headed geese and provide practical viral genome information for the prevention and treatment of potential viral diseases affecting this species.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Shixing Yang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wen Zhang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
2
|
Li Y, Zhang L, Wang L, Li J, Zhao Y, Liu F, Wang Q. Structure and function of type IV IRES in picornaviruses: a systematic review. Front Microbiol 2024; 15:1415698. [PMID: 38855772 PMCID: PMC11157119 DOI: 10.3389/fmicb.2024.1415698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/13/2024] [Indexed: 06/11/2024] Open
Abstract
The Picornaviridae is a family of icosahedral viruses with single-stranded, highly diverse positive-sense RNA genomes. Virions consist of a capsid, without envelope, surrounding a core of RNA genome. A typical genome of picornavirus harbors a well-conserved and highly structured RNA element known as the internal ribosome entry site (IRES), functionally essential for viral replication and protein translation. Based on differences in their structures and mechanisms of action, picornaviral IRESs have been categorized into five types: type I, II, III, IV, and V. Compared with the type IV IRES, the others not only are structurally complicated, but also involve multiple initiation factors for triggering protein translation. The type IV IRES, often referred to as hepatitis C virus (HCV)-like IRES due to its structural resemblance to the HCV IRES, exhibits a simpler and more compact structure than those of the other four. The increasing identification of picornaviruses with the type IV IRES suggests that this IRES type seems to reveal strong retention and adaptation in terms of viral evolution. Here, we systematically reviewed structural features and biological functions of the type IV IRES in picornaviruses. A comprehensive understanding of the roles of type IV IRESs will contribute to elucidating the replication mechanism and pathogenesis of picornaviruses.
Collapse
Affiliation(s)
- Yan Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- Qingdao Center for Animal Disease Control and Prevention, Qingdao, China
| | - Lei Zhang
- Shandong New Hope Liuhe Group Co., Ltd., Qingdao, China
| | - Ling Wang
- University Hospital, Qingdao Agricultural University, Qingdao, China
| | - Jing Li
- Market Supervision Administration of Huangdao District, Qingdao, China
| | - Yanwei Zhao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Fuxiao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Qianqian Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
3
|
Cui N, Yang X, Sui H, Tan L, Wang W, Su S, Qi L, Huang Q, Hrabchenko N, Xu C. Virome characterization of diarrheic red-crowned crane (G. japonensis). Anim Microbiome 2024; 6:8. [PMID: 38419121 PMCID: PMC10902971 DOI: 10.1186/s42523-024-00299-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/26/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND The red-crowned crane is one of the vulnerable bird species. Although the captive population has markedly increased over the last decade, infectious diseases can lead to the death of young red-crowned cranes while few virological studies have been conducted. METHODS Using a viral metagenomics approach, we analyzed the virome of tissues of the dead captive red-crowned crane with diarrhea symptoms in Dongying Biosphere Reserve, Shandong Province, China and feces of individual birds breeding at the corresponding captive breeding center, which were pooled separately. RESULTS There is much more DNA and RNA viruses in the feces than that of the tissues. RNA virus belonging to the families Picornaviridae, and DNA viruses belonging to the families Parvoviridae, associated with enteric diseases were detected in the tissues and feces. Genomes of the picornavirus, genomovirus, and parvovirus identified in the study were fully characterized, which further suggested that infectious viruses of these families were possibly presented in the diseased red-crowned crane. CONCLUSION RNA virus belonging to the families Picornaviridae, and DNA viruses belonging to the families Genomoviridae and Parvoviridae were possibly the causative agent for diarrhea of red-crowned crane. This study has expanded our understanding of the virome of red-crowned crane and provides a baseline for elucidating the etiology for diarrhea of the birds.
Collapse
Affiliation(s)
- Ning Cui
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Jinan, China
| | - Xiao Yang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Jinan, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Hong Sui
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Jinan, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Liugang Tan
- Dongying Animal Husbandry and Veterinary Station, Dongying, China
| | - Weihua Wang
- National Nature Reserve Management Committee of Shandong Yellow River Triangle, Dongying, China
| | - Shuai Su
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Lihong Qi
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Jinan, China
| | - Qinghua Huang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Jinan, China.
| | - Nataliia Hrabchenko
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Jinan, China.
| | - Chuantian Xu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Jinan, China.
| |
Collapse
|