1
|
Torkashvand N, Kamyab H, Shahverdi AR, Khoshayand MR, Karimi Tarshizi MA, Sepehrizadeh Z. Characterization and genome analysis of a broad host range lytic phage vB_SenS_TUMS_E19 against Salmonella enterica and its efficiency evaluation in the liquid egg. Can J Microbiol 2024; 70:358-369. [PMID: 38990097 DOI: 10.1139/cjm-2024-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Salmonella enterica serovars are zoonotic bacterial that cause foodborne enteritis. Due to bacteria's antibiotic resistance, using bacteriophages for biocontrol and treatment is a new therapeutic approach. In this study, we isolated, characterized, and analyzed the genome of vB_SenS_TUMS_E19 (E19), a broad host range Salmonella bacteriophage, and evaluated the influence of E19 on liquid eggs infected with Salmonella enterica serovar Enteritidis. Transmission electron microscopy showed that the isolated bacteriophage had a siphovirus morphotype. E19 showed rapid adsorption (92% in 5 min), a short latent period (18 min), a large burst size (156 PFU per cell), and a broad host range against different Salmonella enterica serovars. Whole-genome sequencing analysis indicated that the isolated phage had a 42 813 bp long genome with 49.8% G + C content. Neither tRNA genes nor those associated with antibiotic resistance, virulence factors, or lysogenic formation were detected in the genome. The efficacy of E19 was evaluated in liquid eggs inoculated with S. Enteritidis at 4 and 25 °C, and results showed that it could effectively eradicate S. Enteritidis in just 30 min and prevented its growth up to 72 h. Our findings indicate that E19 can be an alternative to a preservative to control Salmonella in food samples and help prevent and treat salmonellosis.
Collapse
Affiliation(s)
- Narges Torkashvand
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy & Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Haniyeh Kamyab
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy & Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Shahverdi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy & Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Khoshayand
- Department of Food and Drug Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Zargham Sepehrizadeh
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy & Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Petrzik K. Peptidoglycan Endopeptidase from Novel Adaiavirus Bacteriophage Lyses Pseudomonas aeruginosa Strains as Well as Arthrobacter globiformis and A. pascens Bacteria. Microorganisms 2023; 11:1888. [PMID: 37630448 PMCID: PMC10458142 DOI: 10.3390/microorganisms11081888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
A novel virus lytic for Pseudomonas aeruginosa has been purified. Its viral particles have a siphoviral morphology with a head 60 nm in diameter and a noncontractile tail 184 nm long. The dsDNA genome consists of 16,449 bp, has cohesive 3' termini, and encodes 28 putative proteins in a single strain. The peptidoglycan endopeptidase encoded by ORF 16 was found to be the lytic enzyme of this virus. The recombinant, purified enzyme was active up to 55 °C in the pH range 6-9 against all tested isolates of P. aeruginosa, but, surprisingly, also against the distant Gram-positive micrococci Arthrobacter globiformis and A. pascens. Both this virus and its endolysin are further candidates for possible treatment against P. aeruginosa and probably also other bacteria.
Collapse
Affiliation(s)
- Karel Petrzik
- Institute of Plant Molecular Biology, Biology Centre of the Czech Academy of Sciences, Branisovska 1160/31, 370 05 Ceske Budejovice, Czech Republic
| |
Collapse
|
3
|
Wang X, Tang J, Dang W, Xie Z, Zhang F, Hao X, Sun S, Liu X, Luo Y, Li M, Gu Y, Wang Y, Chen Q, Shen X, Xu L. Isolation and Characterization of Three Pseudomonas aeruginosa Viruses with Therapeutic Potential. Microbiol Spectr 2023; 11:e0463622. [PMID: 37125933 PMCID: PMC10269630 DOI: 10.1128/spectrum.04636-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
As one of the most common pathogens of opportunistic and hospital-acquired infections, Pseudomonas aeruginosa is associated with resistance to diverse antibiotics, which represents a significant challenge to current treatment modalities. Phage therapy is considered a promising alternative to conventional antimicrobials. The characterization and isolation of new bacteriophages and the concurrent evaluation of their therapeutic potential are fundamental for phage therapy. In this study, we employed an enrichment method and a double-layer agar overlay to isolate bacteriophages that infect P. aeruginosa strains PAO1 and PA14. Three phages (named PA_LZ01, PA_LZ02, and PA_LZ03) were isolated and showed icosahedral heads and contractile tails. Following full-genome sequencing, we found that phage PA_LZ01 contained a genome of 65,367 bp in size and harbored 90 predicted open reading frames (ORFs), phage PA_LZ02 contained a genome of 57,243 bp in size and harbored 75 predicted ORFs, and phage PA_LZ03 contained a genome of 57,367 bp in size and carried 77 predicted ORFs. Further comparative analysis showed that phage PA_LZ01 belonged to the genus Pbunavirus genus, phage PA_LZ02 belonged to the genus Pamexvirus, and phage PA_LZ03 belonged to the family Mesyanzhinovviridae. Next, we demonstrated that these phages were rather stable at different temperatures and pHs. One-step growth curves showed that the burst size of PA_LZ01 was 15 PFU/infected cell, and that of PA_LZ02 was 50 PFU/infected cell, while the titer of PA_LZ03 was not elevated. Similarly, the biofilm clearance capacities of PA_LZ01 and PA_LZ02 were also higher than that of PA_LZ03. Therapeutically, PA_LZ01 and PA_LZ02 treatment led to decreased bacterial loads and inflammatory responses in a mouse model. In conclusion, we isolated three phages that can infect P. aeruginosa, which were stable in different environments and could reduce bacterial biofilms, suggesting their potential as promising candidates to treat P. aeruginosa infections. IMPORTANCE Phage therapy is a promising therapeutic option for treating bacterial infections that do not respond to common antimicrobial treatments. Biofilm-mediated infections are particularly difficult to treat with traditional antibiotics, and the emergence of antibiotic-resistant strains has further complicated the situation. Pseudomonas aeruginosa is a bacterial pathogen that causes chronic infections and is highly resistant to many antibiotics. The library of phages that target P. aeruginosa is expanding, and the isolation of new bacteriophages is constantly required. In this study, three bacteriophages that could infect P. aeruginosa were isolated, and their biological characteristics were investigated. In particular, the isolated phages are capable of reducing biofilms formed by P. aeruginosa. Further analysis indicates that treatment with PA_LZ01 and PA_LZ02 phages reduces bacterial loads and inflammatory responses in vivo. This study isolated and characterized bacteriophages that could infect P. aeruginosa, which offers a resource for phage therapy.
Collapse
Affiliation(s)
- Xiao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Jingjing Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Wen Dang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhen Xie
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Fuhua Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xinwei Hao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Sihuai Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xuan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yi Luo
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Mengyuan Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanchao Gu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Qiwei Chen
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Lei Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
4
|
Górniak M, Zalewska A, Jurczak-Kurek A. Recombination Events in Putative Tail Fibre Gene in Litunavirus Phages Infecting Pseudomonas aeruginosa and Their Phylogenetic Consequences. Viruses 2022; 14:v14122669. [PMID: 36560673 PMCID: PMC9786124 DOI: 10.3390/v14122669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Recombination is the main driver of bacteriophage evolution. It may serve as a tool for extending the phage host spectrum, which is significant not only for phages' ecology but also for their utilisation as therapeutic agents of bacterial infections. The aim of this study was to detect the recombination events in the genomes of Litunavirus phages infecting Pseudomonas aeruginosa, and present their impact on phylogenetic relations within this phage group. The phylogenetic analyses involved: the whole-genome, core-genome (Schitoviridae conserved genes), variable genome region, and the whole-genome minus variable region. Interestingly, the recombination events taking place in the putative host recognition region (tail fibre protein gene and the adjacent downstream gene) significantly influenced tree topology, suggesting a strong phylogenetic signal. Our results indicate the recombination between phages from two genera Litunavirus and Luzeptimavirus and demonstrate its influence on phage phylogeny.
Collapse
|