1
|
Zhou D, Fei Z, Liu G, Jiang Y, Jiang W, Lin CSK, Zhang W, Xin F, Jiang M. The bioproduction of astaxanthin: A comprehensive review on the microbial synthesis and downstream extraction. Biotechnol Adv 2024; 74:108392. [PMID: 38825214 DOI: 10.1016/j.biotechadv.2024.108392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/26/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Astaxanthin is a valuable orange-red carotenoid with wide applications in agriculture, food, cosmetics, pharmaceuticals and nutraceuticals areas. At present, the biological synthesis of astaxanthin mainly relies on Haematococcus pluvialis and Xanthophyllomyces dendrorhous. With the rapid development of synthetic biology, more recombinant microbial hosts have been genetically constructed for astaxanthin production including Escherichia coli, Saccharomyces cerevisiae and Yarrowia lipolytica. As multiple genes (15) were involved in the astaxanthin synthesis, it is particularly important to adopt different strategies to balance the metabolic flow towards the astaxanthin synthesis. Furthermore, astaxanthin is a fat-soluble compound stored intracellularly, hence efficient extraction methods are also essential for the economical production of astaxanthin. Several efficient and green extraction methods of astaxanthin have been reported in recent years, including the superfluid extraction, ionic liquid extraction and microwave-assisted extraction. Accordingly, this review will comprehensively introduce the advances on the astaxanthin production and extraction by using different microbial hosts and strategies to improve the astaxanthin synthesis and extraction efficiency.
Collapse
Affiliation(s)
- Dawei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Zhengyue Fei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Guannan Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Wankui Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, 999077, Hong Kong
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China.
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China.
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China
| |
Collapse
|
2
|
Pinyaphong P, La-up A. Optimization of 1,3-propanediol production from fermentation of crude glycerol by immobilized Bacillus pumilus. Heliyon 2024; 10:e35349. [PMID: 39170159 PMCID: PMC11336579 DOI: 10.1016/j.heliyon.2024.e35349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
This study investigates the application of crude glycerol to the production of 1,3-propanediol by immobilized cells of Bacillus pumilus. This is a novel application of a naturally occurring producer obtained from a wastewater storage pond in Thailand. Crude glycerol was obtained through the methanolysis of palm oil, which was catalyzed using rice bran lipase. Ten components of the fermentation medium were screened using a Plackett-Burman design. The statistical significance of the results was determined using multiple linear regression with a backward elimination approach. The significance level was set to 5 % (p < 0.05). Only crude glycerol, (NH4)2SO4, MgSO4, and CaCl2 significantly affected 1,3-propanediol production by immobilized B. pumilus. Furthermore, preliminary screenings of environmental conditions used for 1,3-propanediol production were conducted using a Plackett-Burman design. The results showed that the temperature, time, and quantity of immobilized cells were factors that significantly affected 1,3-propanediol yield. Therefore, the quantities of crude glycerol, (NH4)2SO4, MgSO4, and CaCl2 and the temperature, time, and quantity of immobilized cells were optimized using response surface methodology based on a Box-Behnken design. The model predicted a maximum 1,3-propanediol yield of 45.68 g/L with the following conditions: 60 g/L crude glycerol, 5 g/L (NH4)2SO4, 0.55 g/L MgSO4, 0.05 g/L CaCl2, a fermentation duration of 101 h, and a temperature of 25 °C, with 250 g of immobilized cells. The validation trials confirmed a production level of 44.12 ± 1.81 g/L, indicating a 2.86-fold production increase relative to the control group. Overall, this study demonstrates the potential of using crude glycerol as a substrate to improve the yields of 1,3-propanediol produced by B. pumilus.
Collapse
Affiliation(s)
- Porntippa Pinyaphong
- Department of Chemistry, Faculty of Science and Technology, Uttaradit Rajabhat University, Uttaradit, 53000, Thailand
| | - Aroon La-up
- Mahidol University, Nakhonsawan Campus, Nakhonsawan, 60130, Thailand
| |
Collapse
|
3
|
Intasian P, Prakinee K, Phintha A, Trisrivirat D, Weeranoppanant N, Wongnate T, Chaiyen P. Enzymes, In Vivo Biocatalysis, and Metabolic Engineering for Enabling a Circular Economy and Sustainability. Chem Rev 2021; 121:10367-10451. [PMID: 34228428 DOI: 10.1021/acs.chemrev.1c00121] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the industrial revolution, the rapid growth and development of global industries have depended largely upon the utilization of coal-derived chemicals, and more recently, the utilization of petroleum-based chemicals. These developments have followed a linear economy model (produce, consume, and dispose). As the world is facing a serious threat from the climate change crisis, a more sustainable solution for manufacturing, i.e., circular economy in which waste from the same or different industries can be used as feedstocks or resources for production offers an attractive industrial/business model. In nature, biological systems, i.e., microorganisms routinely use their enzymes and metabolic pathways to convert organic and inorganic wastes to synthesize biochemicals and energy required for their growth. Therefore, an understanding of how selected enzymes convert biobased feedstocks into special (bio)chemicals serves as an important basis from which to build on for applications in biocatalysis, metabolic engineering, and synthetic biology to enable biobased processes that are greener and cleaner for the environment. This review article highlights the current state of knowledge regarding the enzymatic reactions used in converting biobased wastes (lignocellulosic biomass, sugar, phenolic acid, triglyceride, fatty acid, and glycerol) and greenhouse gases (CO2 and CH4) into value-added products and discusses the current progress made in their metabolic engineering. The commercial aspects and life cycle assessment of products from enzymatic and metabolic engineering are also discussed. Continued development in the field of metabolic engineering would offer diversified solutions which are sustainable and renewable for manufacturing valuable chemicals.
Collapse
Affiliation(s)
- Pattarawan Intasian
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Kridsadakorn Prakinee
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Aisaraphon Phintha
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand.,Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Duangthip Trisrivirat
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Nopphon Weeranoppanant
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand.,Department of Chemical Engineering, Faculty of Engineering, Burapha University, 169, Long-hard Bangsaen, Saensook, Muang, Chonburi 20131, Thailand
| | - Thanyaporn Wongnate
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| |
Collapse
|
4
|
Westbrook AW, Miscevic D, Kilpatrick S, Bruder MR, Moo-Young M, Chou CP. Strain engineering for microbial production of value-added chemicals and fuels from glycerol. Biotechnol Adv 2019; 37:538-568. [DOI: 10.1016/j.biotechadv.2018.10.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 10/03/2018] [Accepted: 10/10/2018] [Indexed: 12/22/2022]
|
5
|
Yang B, Liang S, Liu H, Liu J, Cui Z, Wen J. Metabolic engineering of Escherichia coli for 1,3-propanediol biosynthesis from glycerol. BIORESOURCE TECHNOLOGY 2018; 267:599-607. [PMID: 30056370 DOI: 10.1016/j.biortech.2018.07.082] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/15/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
In this study, the engineered E. coli was constructed for efficient transformation of glycerol to 1,3-propanediol (1,3-PDO). To regenerate NADPH, the key bottleneck in 1,3-PDO production, heterologous NADP+-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPDN, encoded by gapN) pathway was introduced, and the gapN expression level was fine-tuned with specific 5'-untranslated regions (5'-UTR) to balance the carbon flux distribution between the metabolic pathways of NADPH regeneration and 1,3-PDO biosynthesis. Additionally, glucose was added to the medium to promote glycerol utilization and cell growth. To elevate the utilization of glycerol in the presence of glucose, E. coli JA11 was constructed through destroying PEP-dependent glucose transport system while strengthening the ATP-dependent transport system. Subsequent optimization of nitrogen sources further improved 1,3-PDO production. Finally, under the optimal fermentation condition, E. coli JA11 produced 13.47 g/L 1,3-PDO, with a yield of 0.64 mol/mol, increased by 325% and 100% compared with the original engineered E. coli JA03, respectively.
Collapse
Affiliation(s)
- Bo Yang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Shaoxiong Liang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Huanhuan Liu
- State Key Laboratory of Food Nutrition and Safety (Tianjin University of Science & Technology), Tianjin 300457, China; Key Laboratory of Food Nutrition and Safety (Tianjin University of Science & Technology), Ministry of Education, Tianjin 300457, China
| | - Jiao Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Zhenzhen Cui
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jianping Wen
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
6
|
Supaporn P, Yeom SH. Statistical Optimization of 1,3-Propanediol (1,3-PD) Production from Crude Glycerol by Considering Four Objectives: 1,3-PD Concentration, Yield, Selectivity, and Productivity. Appl Biochem Biotechnol 2018; 186:644-661. [PMID: 29707733 DOI: 10.1007/s12010-018-2766-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/18/2018] [Indexed: 11/29/2022]
Abstract
This study investigated the biological conversion of crude glycerol generated from a commercial biodiesel production plant as a by-product to 1,3-propanediol (1,3-PD). Statistical analysis was employed to derive a statistical model for the individual and interactive effects of glycerol, (NH4)2SO4, trace elements, pH, and cultivation time on the four objectives: 1,3-PD concentration, yield, selectivity, and productivity. Optimum conditions for each objective with its maximum value were predicted by statistical optimization, and experiments under the optimum conditions verified the predictions. In addition, by systematic analysis of the values of four objectives, optimum conditions for 1,3-PD concentration (49.8 g/L initial glycerol, 4.0 g/L of (NH4)2SO4, 2.0 mL/L of trace element, pH 7.5, and 11.2 h of cultivation time) were determined to be the global optimum culture conditions for 1,3-PD production. Under these conditions, we could achieve high 1,3-PD yield (47.4%), 1,3-PD selectivity (88.8%), and 1,3-PD productivity (2.1/g/L/h) as well as high 1,3-PD concentration (23.6 g/L).
Collapse
Affiliation(s)
- Pansuwan Supaporn
- Department of Biochemical Engineering, Gangneung-Wonju National University, Gangneung, 25457, Republic of Korea
| | - Sung Ho Yeom
- Department of Biochemical Engineering, Gangneung-Wonju National University, Gangneung, 25457, Republic of Korea.
| |
Collapse
|
7
|
Zong H, Liu X, Chen W, Zhuge B, Sun J. Construction of glycerol synthesis pathway in Klebsiella pneumoniae for bioconversion of glucose into 1,3-propanediol. BIOTECHNOL BIOPROC E 2017. [DOI: 10.1007/s12257-016-0375-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Maervoet VET, De Maeseneire SL, Avci FG, Beauprez J, Soetaert WK, De Mey M. 1,3-propanediol production with Citrobacter werkmanii DSM17579: effect of a dhaD knock-out. Microb Cell Fact 2014; 13:70. [PMID: 24885849 PMCID: PMC4031495 DOI: 10.1186/1475-2859-13-70] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 05/09/2014] [Indexed: 11/24/2022] Open
Abstract
Background 1,3-propanediol (PDO) is a substantially industrial metabolite used in the polymer industry. Although several natural PDO production hosts exist, e.g. Klebsiella sp., Citrobacter sp. and Clostridium sp., the PDO yield on glycerol is insufficient for an economically viable bio-process. Enhancing this yield via strain improvement can be achieved by disconnecting the production and growth pathways. In the case of PDO formation, this approach results in a microorganism metabolizing glycerol strictly for PDO production, while catabolizing a co-substrate for growth and maintenance. We applied this strategy to improve the PDO production with Citrobacter werkmanii DSM17579. Results Genetic tools were developed and used to create Citrobacter werkmanii DSM17579 ∆dhaD in which dhaD, encoding for glycerol dehydrogenase, was deleted. Since this strain was unable to grow on glycerol anaerobically, both pathways were disconnected. The knock-out strain was perturbed with 13 different co-substrates for growth and maintenance. Glucose was the most promising, although a competition between NADH-consuming enzymes and 1,3-propanediol dehydrogenase emerged. Conclusion Due to the deletion of dhaD in Citrobacter werkmanii DSM17579, the PDO production and growth pathway were split. As a consequence, the PDO yield on glycerol was improved 1,5 times, strengthening the idea that Citrobacter werkmanii DSM17579 could become an industrially interesting host for PDO production.
Collapse
Affiliation(s)
- Veerle E T Maervoet
- Centre of Expertise - Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Ghent University, Coupure links 653, B-9000 Ghent, Belgium.
| | | | | | | | | | | |
Collapse
|
9
|
Kim K, Kim SK, Park YC, Seo JH. Enhanced production of 3-hydroxypropionic acid from glycerol by modulation of glycerol metabolism in recombinant Escherichia coli. BIORESOURCE TECHNOLOGY 2014; 156:170-5. [PMID: 24502915 DOI: 10.1016/j.biortech.2014.01.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 01/01/2014] [Accepted: 01/03/2014] [Indexed: 05/15/2023]
Abstract
3-Hydroxypropionic acid (3-HP) is a valuable biochemical with high potential for bioplastic manufacturing. The endogenous glycerol metabolism and by-product formation pathway in Escherichia coli were modulated to enhance 3-HP production from glycerol. Double deletion of glpK and yqhD directed the glycerol flux to 3-HP biosynthesis and reduced the formation of 1,3-propanediol. Since 3-hydroxypropionaldehyde (3-HPA), a precursor of 3-HP, is toxic to cell growth, the gene encoding Pseudomonas aeruginosa semialdehyde dehydrogenase (PSALDH) highly active on 3-HPA was expressed in E. coli. Finally, fed-batch culture of recombinant E. coli BL21star(DE3) without glpK and yqhD, and expressing Lactobacillus brevis DhaB-DhaR, and P. aeruginosa PSALDH resulted in 57.3g/L 3-HP concentration, 1.59g/L-h productivity and 0.88g/g yield. In conclusion, modulation of the glycerol metabolism in combination with enhanced activity of 3-HPA dehydrogenation improved the production of 3-HP from glycerol.
Collapse
Affiliation(s)
- Kwangwook Kim
- Interdisciplinary Program of Bioengineering, Seoul National University, Seoul 151-921, South Korea
| | - Sun-Ki Kim
- Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul 151-921, South Korea
| | - Yong-Cheol Park
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 136-702, South Korea.
| | - Jin-Ho Seo
- Interdisciplinary Program of Bioengineering, Seoul National University, Seoul 151-921, South Korea; Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul 151-921, South Korea.
| |
Collapse
|
10
|
Raghunandan K, McHunu S, Kumar A, Kumar KS, Govender A, Permaul K, Singh S. Biodegradation of glycerol using bacterial isolates from soil under aerobic conditions. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2014; 49:85-92. [PMID: 24117087 DOI: 10.1080/10934529.2013.824733] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Glycerol, a non-biodegradable by-product during biodiesel production is a major concern to the emerging biodiesel industry. Many microbes in natural environments have the ability to utilize glycerol as a sole carbon and energy source. The focus of this study was to screen for microorganisms from soil, capable of glycerol utilization and its conversion to value added products such as ethanol and 1,3-propanediol (1,3-PDO). Twelve bacterial isolates were screened for glycerol utilization ability in shake flask fermentations using M9 media supplemented with analytical grade glycerol (30 g/L) at various pH values (6, 7 and 8) and temperatures (30°C, 35°C and 40°C). Among these, six bacterial isolates (SM1, SM3, SM4, SM5, SM7 and SM8) with high glycerol degradation efficiency (>80%) were selected for further analysis. Highest level of 1,3-PDO production (15 g/L) was observed with isolate SM7 at pH 7 and 30°C, while superior ethanol production (14 g/L) was achieved by isolate SM9 at pH 8 and 35°C, at a glycerol concentration of 30 g/L. The selected strains were further evaluated for their bioconversion efficiency at elevated glycerol concentrations (50-110 g/L). Maximum 1,3-PDO production (46 g/L and 35 g/L) was achieved at a glycerol concentration of 70 g/L by isolates SM4 and SM7 respectively, with high glycerol degradation efficiency (>90). Three isolates (SM4, SM5 and SM7) also showed greater glycerol tolerance (up to 110 g/L). The isolates SM4 and SM7 were identified as Klebsiella pneumoniae and SM5 as Enterobacter aerogenes by 16S rDNA analysis. These novel isolates with greater glycerol tolerance could be used for the biodegradation of glycerol waste generated from the biodiesel industry into value-added commercial products.
Collapse
Affiliation(s)
- Kerisha Raghunandan
- a Enzyme Technology Group, Department of Biotechnology and Food Technology, Faculty of Applied Sciences , Durban University of Technology , Durban , South Africa
| | | | | | | | | | | | | |
Collapse
|
11
|
Engineering microbial factories for synthesis of value-added products. J Ind Microbiol Biotechnol 2011; 38:873-90. [PMID: 21526386 DOI: 10.1007/s10295-011-0970-3] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Accepted: 04/01/2011] [Indexed: 01/07/2023]
Abstract
Microorganisms have become an increasingly important platform for the production of drugs, chemicals, and biofuels from renewable resources. Advances in protein engineering, metabolic engineering, and synthetic biology enable redesigning microbial cellular networks and fine-tuning physiological capabilities, thus generating industrially viable strains for the production of natural and unnatural value-added compounds. In this review, we describe the recent progress on engineering microbial factories for synthesis of valued-added products including alkaloids, terpenoids, flavonoids, polyketides, non-ribosomal peptides, biofuels, and chemicals. Related topics on lignocellulose degradation, sugar utilization, and microbial tolerance improvement will also be discussed.
Collapse
|
12
|
Maervoet VET, De Mey M, Beauprez J, De Maeseneire S, Soetaert WK. Enhancing the Microbial Conversion of Glycerol to 1,3-Propanediol Using Metabolic Engineering. Org Process Res Dev 2010. [DOI: 10.1021/op1001929] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Veerle E. T. Maervoet
- Centre of Expertise - Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | - Marjan De Mey
- Centre of Expertise - Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | - Joeri Beauprez
- Centre of Expertise - Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | - Sofie De Maeseneire
- Centre of Expertise - Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | - Wim K. Soetaert
- Centre of Expertise - Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| |
Collapse
|
13
|
Debottlenecking the 1,3-propanediol pathway by metabolic engineering. Biotechnol Adv 2010; 28:519-30. [DOI: 10.1016/j.biotechadv.2010.03.003] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 03/20/2010] [Accepted: 03/25/2010] [Indexed: 11/20/2022]
|
14
|
Ma C, Zhang L, Dai J, Xiu Z. Relaxing the coenzyme specificity of 1,3-propanediol oxidoreductase from Klebsiella pneumoniae by rational design. J Biotechnol 2010; 146:173-8. [PMID: 20156491 DOI: 10.1016/j.jbiotec.2010.02.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 01/22/2010] [Accepted: 02/07/2010] [Indexed: 10/19/2022]
Abstract
1,3-Propanediol has wide applications for large volume markets, particularly in the polymer business. Microbial production of 1,3-propanediol has been considered as a competitor to the traditional petrochemical routes. However, the formation of 1,3-propanediol is limited by the amount of NADH supplied by the oxidative pathway of glycerol dismutation. Previous metabolic flux analysis revealed that relaxation of the coenzyme specificity of 1,3-propanediol oxidoreductase for both NADH and NADPH would increase the production of 1,3-propanediol as well as maintaining the NADH-NAD(+) circle. This work tried to accomplish such a relaxation by rational protein design. Overall binding free energy indicated that the electrostatic energy was the major force discriminating NADH from NADPH. Computational alanine-scanning mutagenesis of the active site residues illustrated that Asp41 was the key residue responsible for the coenzyme specificity. Compared with Asp41Ala, Asp41Gly could further weaken the repulsion between Asp41 and the phosphate group esterified to the 2'-hydroxyl group of the ribose at the adenine end of NADPH. Site-directed mutagenesis was conducted and the relaxation was successfully realized.
Collapse
Affiliation(s)
- Chengwei Ma
- Department of Bioscience and Biotechnology, School of Environmental and Biological Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | | | | | | |
Collapse
|
15
|
Construction of a Novel Expression System in Klebsiella pneumoniae and its Application for 1,3-Propanediol Production. Appl Biochem Biotechnol 2009; 162:399-407. [DOI: 10.1007/s12010-009-8743-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 08/04/2009] [Indexed: 11/26/2022]
|
16
|
Silencing of NADPH-dependent oxidoreductase genes (yqhD and dkgA) in furfural-resistant ethanologenic Escherichia coli. Appl Environ Microbiol 2009; 75:4315-23. [PMID: 19429550 DOI: 10.1128/aem.00567-09] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Low concentrations of furfural are formed as a side product during the dilute acid hydrolysis of hemicellulose. Growth is inhibited by exposure to furfural but resumes after the complete reduction of furfural to the less toxic furfuryl alcohol. Growth-based selection was used to isolate a furfural-resistant mutant of ethanologenic Escherichia coli LY180, designated strain EMFR9. Based on mRNA expression levels in the parent and mutant in response to furfural challenge, genes encoding 12 oxidoreductases were found to vary by more than twofold (eight were higher in EMFR9; four were higher in the parent). All 12 genes were cloned. When expressed from plasmids, none of the eight genes in the first group increased furfural tolerance in the parent (LY180). Expression of three of the silenced genes (yqhD, dkgA, and yqfA) in EMFR9 was found to decrease furfural tolerance compared to that in the parent. Purified enzymes encoded by yqhD and dkgA were shown to have NADPH-dependent furfural reductase activity. Both exhibited low K(m) values for NADPH (8 microM and 23 microM, respectively), similar to those of biosynthetic reactions. Furfural reductase activity was not associated with yqfA. Deleting yqhD and dkgA in the parent (LY180) increased furfural tolerance, but not to the same extent observed in the mutant EMFR9. Together, these results suggest that the process of reducing furfural by using an enzyme with a low K(m) for NADPH rather than a direct inhibitory action is the primary cause for growth inhibition by low concentrations of furfural.
Collapse
|
17
|
Enhanced 1,3-propanediol production in recombinant Klebsiella pneumoniae carrying the gene yqhD encoding 1,3-propanediol oxidoreductase isoenzyme. World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-0005-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Glycerol: A promising and abundant carbon source for industrial microbiology. Biotechnol Adv 2009; 27:30-9. [DOI: 10.1016/j.biotechadv.2008.07.006] [Citation(s) in RCA: 741] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 05/05/2008] [Accepted: 07/31/2008] [Indexed: 11/18/2022]
|