1
|
Actinobacteria isolated from wastewater treatment plants located in the east-north of Algeria able to degrade pesticides. World J Microbiol Biotechnol 2022; 38:105. [PMID: 35501608 DOI: 10.1007/s11274-022-03282-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
Abstract
The pollution of water resources by pesticides poses serious problems for public health and the environment. In this study, Actinobacteria strains were isolated from three wastewater treatment plants (WWTPs) and were screened for their ability to degrade 17 pesticide compounds. Preliminary screening of 13 of the isolates of Actinobacteria allowed the selection of 12 strains with potential for the degradation of nine different pesticides as sole carbon source, including aliette, for which there are no previous reports of biodegradation. Evaluation of the bacterial growth and degradation kinetics of the pesticides 2,4-dichlorophenol (2,4-DCP) and thiamethoxam (tiam) by selected Actinobacteria strains was performed in liquid media. Strains Streptomyces sp. ML and Streptomyces sp. OV were able to degrade 45% of 2,4-DCP (50 mg/l) as the sole carbon source in 30 days and 84% of thiamethoxam (35 mg/l) in the presence of 10 mM of glucose in 18 days. The biodegradation of thiamethoxam by Actinobacteria strains was reported for the first time in this study. These strains are promising for use in bioremediation of ecosystems polluted by this type of pesticides.
Collapse
|
2
|
Rajivgandhi G, Gnanamangai BM, Ramachandran G, Chackaravarthy G, Chelliah CK, Maruthupandy M, Alharbi NS, Kadaikunnan S, Li WJ. Effective removal of heavy metals in industrial wastewater with novel bioactive catalyst enabling hybrid approach. ENVIRONMENTAL RESEARCH 2022; 204:112337. [PMID: 34742711 DOI: 10.1016/j.envres.2021.112337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/30/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Recent years, heavy metal reduction of contaminated atmosphere using microbes is heightened worldwide. In this context, the current study was focused on heavy metal resistant actinomycete strains were screened from effluent mixed contaminated soil samples. Based on the phenotypic and molecular identification, the high metal resistant actinomycete strain was named as Nocardiopsis dassonvillei (MH900216). The highest bioflocculent and exopolysaccharide productions of Nocardiopsis dassonvillei (MH900216) was confirmed by various invitro experiments result. The heavy metal degrading substances was characterized and effectively confirmed by Fourier transform infrared spectroscopy (FT-IR), X-Ray Diffraction (XRD), Scanning electron microscope (SEM). Further, the heavy metal sorption ability of actinomycete substances bioflocculent was exhibited 85.20%, 89.40%, 75.60%, and 51.40% against Cd, Cr, Pb and Hg respectively. Altogether, the bioflocculent produced actinomycete Nocardiopsis dassonvillei (MH900216) as an excellent biological source for heavy metal reduction in waste water, and it is an alternative method for effective removal of heavy metals towards sustainable environmental management.
Collapse
Affiliation(s)
- Govindan Rajivgandhi
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China; Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India.
| | | | - Govindan Ramachandran
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | | | - Chenthis Kanisha Chelliah
- Department of Nanotechnology, Noorul Islam Centre for Higher Education, Thuckalay, Kumaracoil, Tamil Nadu, 629180, India
| | - Muthuchamy Maruthupandy
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-Dearo 550 Beon-Gil, Saha-Gu, Busan, 49315, South Korea
| | - Naiyf S Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Shine Kadaikunnan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, PR China.
| |
Collapse
|
3
|
Distribution and Characterization of Actinomycetes in Mangrove Habitats (Red Sea, Egypt) with Special Emphasis on Streptomyces mutabilis M3MT483919. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.1.19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ten sediment samples were gathered from several geographical locations around mangrove habitat, Red Sea coast, Egypt, during summer 2019. Actinobacteria are widespread in most mangrove soil samples. The average actinomycetes counts in sediment samples were ranged from 4 to 15 CFUg-1, also physico-chemical characters for soil samples were determined. Statistical analysis was applied to assess if the geographical location and physico-chemical characters influenced the communities of actinomycetes. A total of 10 actinomycetes were isolated and characterized physiologically and biochemically. The antimicrobial activities of different actinomycetes isolates were assessed. Isolate M3 was chosen as the most promising isolate with broad antagonistic activity against Bacillus subtilis ATCC 6633, Escherichia coli ATCC 19404, Staphylococcus aureus ATCC6538, Pseudomonas aeruginosa ATCC 9027, and Candida albicans ATCC 10231 with inhibition zones ranged from 12.0 ± 0.9 to 20.0 ± 1.9 mm. Genotypic characterization of isolate M3 was made using 16S rDNA sequence analysis and identified as Streptomyces mutabilis M3 with accession number MT483919. This strain exhibited anticancer activity against breast cancer cell line (Mcf7), liver cancer cell line (HepG2) and colon cancer cell line (HCT116) and the IC50 values were 324.77, 333.71 and 354.46, respectively. Streptomyces mutabilis M3 MT483919 had high bio-flocculating activity for seawater treatment, and the recovery of the samples ranged between 71.97 and 76.05%. The crude extract of Streptomyces mutabilis MT483919 M3 was analyzed by Fourier transform infrared spectrum (FT-IR) and Gas chromatography-mass spectrometry (GC-MS).
Collapse
|
4
|
Krishnamoorthy M, Dharmaraj D, Rajendran K, Karuppiah K, Balasubramanian M, Ethiraj K. Pharmacological activities of coral reef associated actinomycetes, Saccharopolyspora sp. IMA1. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
5
|
Fatima A, Aftab U, Shaaban KA, Thorson JS, Sajid I. Spore forming Actinobacterial diversity of Cholistan Desert Pakistan: Polyphasic taxonomy, antimicrobial potential and chemical profiling. BMC Microbiol 2019; 19:49. [PMID: 30795744 PMCID: PMC6387500 DOI: 10.1186/s12866-019-1414-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 02/08/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Actinobacteria are famous for the production of unique secondary metabolites that help in controlling the continuously emerging drug resistance all over the globe. This study aimed at the investigation of an extreme environment the Cholistan desert, located in southern Punjab, Pakistan, for actinobacterial diversity and their activity against methicillin resistant Staphylococcus aureus (MRSA). The Cholistan desert is a sub-tropical and arid ecosystem with harsh environment, limited rainfall and low humidity. The 20 soil and sand samples were collected from different locations in the desert and the actinobacterial strains were selectively isolated. The isolated strains were identified using a polyphasic taxonomic approach including morphological, biochemical, physiological characterization, scanning electron microscopy (SEM) and by 16S rRNA gene sequencing. RESULTS A total of 110 desert actinobacterial strains were recovered, which were found to be belonging to 3 different families of the order Actinomycetales, including the family Streptomycetaceae, family Pseudonocardiaceae and the family Micrococcaceae. The most frequently isolated genus was Streptomyces along with the genera Pseudonocardia and Arthrobacter. The isolated strains exhibited promising antimicrobial activity against methicillin resistant Staphylococcus aureus (MRSA) with zone of inhibition in the range of 9-32 mm in antimicrobial screening assays. The chemical profiling by thin layer chromatography, HPLC-UV/Vis and LC-MS analysis depicted the presence of different structural classes of antibiotics. CONCLUSION The study revealed that Cholistan desert harbors immense actinobacterial diversity and most of the strains produce structurally diverse bioactive secondary metabolites, which are a promising source of novel antimicrobial drug candidates.
Collapse
Affiliation(s)
- Adeela Fatima
- Department of Microbiology and Molecular Genetics (MMG), University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590 Pakistan
| | - Usman Aftab
- Department of Microbiology and Molecular Genetics (MMG), University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590 Pakistan
| | - Khaled A. Shaaban
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40536 USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536 USA
| | - Jon S. Thorson
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40536 USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536 USA
| | - Imran Sajid
- Department of Microbiology and Molecular Genetics (MMG), University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590 Pakistan
| |
Collapse
|
6
|
Fatahi-Bafghi M, Rasouli-nasab M, Yasliani-Fard S, Habibnia S, Gharehbaghi F, Eshraghi SS, Kabir K, Heidarieh P. Diversity and Antimicrobial Activity of Actinomycetes Isolated from Lut Desert: The Extremely Arid Climatic Zones of Iran. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-018-9767-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
7
|
Rao HCY, Rakshith D, Satish S. Antimicrobial properties of endophytic actinomycetes isolated from Combretum latifolium Blume, a medicinal shrub from Western Ghats of India. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s11515-015-1377-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
El Fels L, Hafidi M, Ouhdouch Y. Date palm and the activated sludge co-composting actinobacteria sanitization potential. ENVIRONMENTAL TECHNOLOGY 2015; 37:129-135. [PMID: 26102058 DOI: 10.1080/09593330.2015.1064171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The objective of this study was to find a connection between the development of the compost actinobacteria and the potential involvement of antagonistic thermophilic actinomycetes in compost sanitization as high temperature additional role. An abundance of actinobacteria and coliforms during the activated sludge and date palm co-composting is determined. Hundred actinomycete isolates were isolated from the sample collected at different composting times. To evaluate the antagonistic effects of the different recovered actinomycete isolates, several wastewater-linked microorganisms known as human and plant potential pathogens were used. The results showed that 12 isolates have an in vitro inhibitory effect on at least 9 of the indicator microorganisms while only 4 active strains inhibit all these pathogens. The antimicrobial activities of sterilized composting time extracts are also investigated.
Collapse
Affiliation(s)
- Loubna El Fels
- a Laboratory of Ecology and Environment (L2E) (Unit Associated with the CNRST, URAC32) , Faculty of Science Semlalia, Cadi Ayyad University , 2390 Marrakech , Morocco
| | - Mohamed Hafidi
- a Laboratory of Ecology and Environment (L2E) (Unit Associated with the CNRST, URAC32) , Faculty of Science Semlalia, Cadi Ayyad University , 2390 Marrakech , Morocco
| | - Yedir Ouhdouch
- b Laboratoire de Biologie et Biotechnologie des Microorganismes, Faculté des Sciences Semlalia , Université Cadi Ayyad (UCAM) , Marrakech , Morocco
| |
Collapse
|
9
|
Isolation and characterization of actinobacteria from Yalujiang coastal wetland, North China. Asian Pac J Trop Biomed 2015. [DOI: 10.1016/j.apjtb.2015.04.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
10
|
Ting ASY, Hermanto A, Peh KL. Indigenous actinomycetes from empty fruit bunch compost of oil palm: Evaluation on enzymatic and antagonistic properties. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2014. [DOI: 10.1016/j.bcab.2014.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Fadli M, Saad A, Sayadi S, Chevalier J, Mezrioui NE, Pagès JM, Hassani L. Antibacterial activity of Thymus maroccanus and Thymus broussonetii essential oils against nosocomial infection - bacteria and their synergistic potential with antibiotics. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2012; 19:464-471. [PMID: 22257599 DOI: 10.1016/j.phymed.2011.12.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 11/14/2011] [Accepted: 12/13/2011] [Indexed: 05/28/2023]
Abstract
The aim of this study was to evaluate the antibacterial effect of the association between conventional antibiotics and essential oils (EOs) of endemic Moroccan thyme species, Thymus maroccanus and T. broussonetii, on antibiotic-resistant bacteria involved in nosocomial infections. Synergistic interactions between antibiotics (ciprofloxacin, gentamicin, pristinamycin, and cefixime) and EOs, and between T. maroccanus and T. Broussonetii EOs were determined by the checkerboard test. Serial dilutions of two antimicrobial agents were mixed together so that each row (and column) contained a fixed amount of the first agent and increasing amounts of the second one. The results indicate that the oils had a high inhibitory activity against tested bacteria, except for Pseudomonas aeruginosa. In parallel with the increase of cellular killing, the release of 260nm-absorbing materials from bacterial cells, treated with EOs, increased in response to oil concentration. Out of 80 combinations tested between EOs and antibiotics, 71% showed total synergism, 20% had partial synergistic interaction and 9% showed no effect. Combination with carvacrol, the major constituent of T. maroccanus and T. broussonetii, showed also an interesting synergistic effect in combination with ciprofloxacin. The effect on Gram-positive bacteria was more important than on Gram-negative bacteria. These findings are very promising since the use of these combinations for nosocomial infections treatment is likely to reduce the minimum effective dose of the antibiotics, thus minimizing their possible toxic side effects and treatment cost. However, further investigations are needed to assess the potential for therapeutic application.
Collapse
Affiliation(s)
- Mariam Fadli
- Laboratoire de Biologie et Biotechnologie des Microorganismes, Pôle d'Excellence Régionale AUF, Faculté des Sciences Semlalia, Université Cadi Ayyad, B.P. 2390, 40000 Marrakech, Morocco
| | | | | | | | | | | | | |
Collapse
|
12
|
Biodegradation of deltamethrin and its hydrolysis product 3-phenoxybenzaldehyde by a newly isolated Streptomyces aureus strain HP-S-01. Appl Microbiol Biotechnol 2011; 90:1471-83. [DOI: 10.1007/s00253-011-3136-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 01/16/2011] [Accepted: 01/18/2011] [Indexed: 10/18/2022]
|