1
|
Thakur M, Kumar P, Rajput D, Yadav V, Dhaka N, Shukla R, Kumar Dubey K. Genome-guided approaches and evaluation of the strategies to influence bioprocessing assisted morphological engineering of Streptomyces cell factories. BIORESOURCE TECHNOLOGY 2023; 376:128836. [PMID: 36898554 DOI: 10.1016/j.biortech.2023.128836] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Streptomyces genera serve as adaptable cell factories for secondary metabolites with various and distinctive chemical structures that are relevant to the pharmaceutical industry. Streptomyces' complex life cycle necessitated a variety of tactics to enhance metabolite production. Identification of metabolic pathways, secondary metabolite clusters, and their controls have all been accomplished using genomic methods. Besides this, bioprocess parameters were also optimized for the regulation of morphology. Kinase families were identified as key checkpoints in the metabolic manipulation (DivIVA, Scy, FilP, matAB, and AfsK) and morphology engineering of Streptomyces. This review illustrates the role of different physiological variables during fermentation in the bioeconomy coupled with genome-based molecular characterization of biomolecules responsible for secondary metabolite production at different developmental stages of the Streptomyces life cycle.
Collapse
Affiliation(s)
- Mony Thakur
- Department of Microbiology, Central University of Haryana, Mahendergarh 123031, India
| | - Punit Kumar
- Department of Morphology and Physiology, Karaganda Medical University, Karaganda 100008 Kazakhstan
| | - Deepanshi Rajput
- Bioprocess Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Vinod Yadav
- Department of Microbiology, Central University of Haryana, Mahendergarh 123031, India
| | - Namrata Dhaka
- Department of Biotechnology, Central University of Haryana, Mahendergarh 123031, India
| | - Rishikesh Shukla
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Mathura- 281406, U.P., India
| | - Kashyap Kumar Dubey
- Bioprocess Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
2
|
WANG H, WANG L, FAN K, PAN G. Tetracycline natural products: discovery, biosynthesis and engineering. Chin J Nat Med 2022; 20:773-794. [DOI: 10.1016/s1875-5364(22)60224-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Indexed: 11/03/2022]
|
3
|
Manikandan A, Johnson I, Jaivel N, Krishnamoorthy R, SenthilKumar M, Raghu R, Gopal NO, Mukherjee PK, Anandham R. Gamma-induced mutants of Bacillus and Streptomyces display enhanced antagonistic activities and suppression of the root rot and wilt diseases in pulses. Biomol Concepts 2022; 13:103-118. [DOI: 10.1515/bmc-2022-0004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/07/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
This study aims to increase Bacillus and Streptomyces antagonistic activity against the root rot and wilt diseases of pulses caused by Macrophomina phaseolina and Fusarium oxysporum f. sp. udum, respectively. To increase antagonistic action, Bacillus subtilis BRBac4, Bacillus siamensis BRBac21, and Streptomyces cavourensis BRAcB10 were subjected to random mutagenesis using varying doses of gamma irradiation (0.5–3.0 kGy). Following the irradiation, 250 bacterial colonies were chosen at random for each antagonistic strain and their effects against pathogens were evaluated in a plate assay. The ERIC, BOX, and random amplified polymorphic studies demonstrated a clear distinction between mutant and wild-type strains. When mutants were compared to wild-type strains, they showed improved plant growth-promoting characteristics and hydrolytic enzyme activity. The disease suppression potential of the selected mutants, B. subtilis BRBac4-M6, B. siamensisi BRBac21-M10, and S. cavourensis BRAcB10-M2, was tested in green gram, black gram, and red gram. The combined inoculation of B. siamensis BRBac21-M10 and S. cavourensis BRAcB10-M2 reduced the incidence of root rot and wilt disease. The same treatment also increased the activity of the defensive enzymes peroxidase, polyphenol oxidase, and phenylalanine ammonia-lyase. These findings suggested that gamma-induced mutation can be exploited effectively to improve the biocontrol characteristics of Bacillus and Streptomyces. Following the field testing, a combined bio-formulation of these two bacteria may be utilised to address wilt and root-rot pathogens in pulses.
Collapse
Affiliation(s)
- Ariyan Manikandan
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University (TNAU) , Coimbatore 641003 , Tamil Nadu , India
| | - Iruthayasamy Johnson
- Department of Plant Pathology, Tamil Nadu Agricultural University (TNAU) , Coimbatore , Tamil Nadu , India
| | - Nanjundan Jaivel
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University (TNAU) , Coimbatore 641003 , Tamil Nadu , India
| | - Ramasamy Krishnamoorthy
- Department of Crop Management, Vanavarayar Institute of Agriculture , Pollachi , Tamil Nadu , India
| | - Murugaiyan SenthilKumar
- Department of Crop Management, Agricultural College and Research Institute, Tamil Nadu Agricultural University (TNAU) , Eachangkottai , Tamil Nadu , India
| | - Rajasekaran Raghu
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University (TNAU) , Coimbatore 641003 , Tamil Nadu , India
| | - Nellaiappan Olaganathan Gopal
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University (TNAU) , Coimbatore 641003 , Tamil Nadu , India
| | - Prasun K. Mukherjee
- Environmental Biotechnology Section Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre , Trombay , Mumbai 400085 , India
| | - Rangasamy Anandham
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University (TNAU) , Coimbatore 641003 , Tamil Nadu , India
| |
Collapse
|
4
|
Hu HF, Zhou HY, Cheng GP, Xue YP, Wang YS, Zheng YG. Improvement of R-2-(4-hydroxyphenoxy) propionic acid biosynthesis of Beauveria bassiana by combined mutagenesis. Biotechnol Appl Biochem 2019; 67:343-353. [PMID: 31846537 DOI: 10.1002/bab.1872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 12/05/2019] [Indexed: 12/16/2022]
Abstract
R-2-(4-hydroxyphenoxy)propionicacid (HPOPA) is a valuable intermediate for the synthesis of enantiomerically pure aryloxyphenoxypropionic acid herbicides. In this work, to improve the HPOPA biosynthesis by Beauveria bassiana ZJB16002 from the substrate R-2-phenoxypropionic acid (POPA), the original HPOPA producer B. bassiana ZJB16002 was subjected to physical mutagenesis with 137 Cs-γ irradiation and chemical mutagen N-methyl-N'-nitro-N-nitrasoguanidine (NTG) induced mutagenesis. The effects of different treatment doses of the mutagens on the lethal rate and positive mutation rate were investigated, and the results showed that the optimal 137 Cs-γirradiation dose and NTG concentration was 850 Gy and 500 µg/mL, respectively. Under these conditions, a mutant strain CCN-7 with the highest HPOPA production capacity was obtained through two rounds of 137 Cs-γ irradiation treatment followed by one round of NTG mutagenesis. At the substrate (POPA) concentration of 50 g/L, HPOPA titer of CCN-7 reached 36.88 g/L, which was 9.73-fold higher than the parental strain. The morphology of the wild-type and mutant strain was compared and the results might provide helpful information in exploration of the correlation of morphology and biochemical features of B. bassiana.
Collapse
Affiliation(s)
- Hai-Feng Hu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, People's Republic of China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Hai-Yan Zhou
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, People's Republic of China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Gao-Ping Cheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, People's Republic of China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, People's Republic of China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Yuan-Shan Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, People's Republic of China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, People's Republic of China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
| |
Collapse
|