1
|
Long J, Cai J, Gao X, Wang YC, Huang XM, Zhu L. Investigation on screening, identification, and fermentation characteristics of Yunnan olive in the fermented liquid utilizing five strains of Saccharomyces cerevisiae. Arch Microbiol 2024; 206:164. [PMID: 38483645 DOI: 10.1007/s00203-024-03882-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 03/19/2024]
Abstract
Refined indigenous Saccharomyces cerevisiae can enhance refinement, sophistication, and subtlety of fruit wines by showcasing exceptional regional characteristics. In order to identify exceptional indigenous S. cerevisiae strains from Yunnan olive, this study isolated 60 yeast strains from wild Yunnan olive fermentation mash. The five S. cerevisiae strains were subjected to morphological and molecular biological identification, followed by evaluation of their fermentation performance, ethanol production capacity, ester production capacity, H2S production capacity, killing capacity, and tolerance. Strains LJM-4, LJM-10, and LJM-26 exhibited robust tolerance to 6% ethanol volume fraction, pH 2.8, sucrose concentration of 400 g/L, SO2 concentration of 0.3 g/L, glucose concentration of 400 g/L at both 40 °C and 15 °C. Additionally, strain LJM-10 demonstrated a faster fermentation rate compared to the other strains. Among the tested S. cerevisiae strains evaluated in this study for olive wine fermentation process in Yunnan region; strain LJM-10 displayed superior abilities in terms of ester and ethanol production while exhibiting the lowest H2S production levels. These findings suggest that strain LJM-10 holds great potential as an excellent candidate for optimizing fruit wine S. cerevisiae fermentation processes in Yunnan olive fruit wine.
Collapse
Affiliation(s)
- Junming Long
- Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing, 655011, People's Republic of China
| | - Jian Cai
- Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing, 655011, People's Republic of China
| | - Xiu Gao
- Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing, 655011, People's Republic of China
| | - Yu-Chen Wang
- School of Chemical Biology and Environment, Yuxi Normal University, Yuxi, 653100, People's Republic of China
| | - Xian-Min Huang
- School of Agronomy and Life Sciences, Zhaotong University, Zhaotong, 657000, People's Republic of China
| | - Ling Zhu
- Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing, 655011, People's Republic of China.
| |
Collapse
|
2
|
Pilot Scale Evaluation of Wild Saccharomyces cerevisiae Strains in Aglianico. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
In winemaking, the influence of Saccharomyces cerevisiae strains on the aromatic components of wine is well recognized on a laboratory scale, but few studies deal with the comparison of numerous strains on a pilot scale fermentation. In this scenario, the present work aimed to validate the fermentative behavior of seven wild S. cerevisiae strains on pilot-scale fermentations to evaluate their impact on the aromatic profiles of the resulting wines. The strains, isolated from grapes of different Italian regional varieties, were tested in pilot-scale fermentation trials performed in the cellar in 1 hL of Aglianico grape must. Then, wines were analyzed for their microbiological cell loads, main chemical parameters of enological interest (ethanol, total sugars, fructose, glucose, total and volatile acidity, malic and lactic acids) and volatile aroma profiles by GC/MS/SPME. Seventy-six volatile compounds belonging to six different classes (esters, alcohols, terpenes, aldehydes, acids, and ketones) were identified. The seven strains showed different trends and significant differences, and for each class of compounds, high-producing and low-producing strains were found. Since the present work was performed at a pilot-scale level, mimicking as much as possible real working conditions, the results obtained can be considered as a validation of the screened S. cerevisiae strains and a strategy to discriminate in real closed conditions strains able to impart desired wine sensory features.
Collapse
|
3
|
Zhang J, Shang Y, Chen J, Brunel B, Peng S, Li S, Wang E. Diversity of non-Saccharomyces yeasts of grape berry surfaces from representative Cabernet Sauvignon vineyards in Henan Province, China. FEMS Microbiol Lett 2021; 368:6424895. [PMID: 34755861 DOI: 10.1093/femsle/fnab142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
Non-Saccharomyces yeasts are important players during winemaking and may come from grapes grown in vineyards. To study the diversity of non-Saccharomyces yeasts on surface grape berries, 433 strains were isolated from different Cabernet Sauvignon vineyards grown in Henan Province. Our results demonstrated that these strains were classified into 16 morphotypes according to their growth morphology on Wallerstein Laboratory agar medium, and were identified as seven species from four genera: Hanseniaspora opuntiae, Hanseniaspora vineae, Hanseniaspora uvarum, Pichia occidentalis, Pichia kluyveri, Issatchenkia terricola and Saturnispora diversa based on a series of molecular biological experiments. Hanseniaspora opuntiae was obtained from all sampling sites except Changyuan County, while Pichia kluyveri and Saturnispora diversa were only found in sites of Zhengzhou Grape Resource Garden and Minquan County, respectively. The site Minquan was home of the greatest species richness while only one single species (Hanseniaspora opuntiae) was detected at NAPA winery from Zhengzhou or at Anyang County. Finally, this study suggested that the geographic distribution and diversity of non-Saccharomyces yeast populations on Cabernet Sauvignon grape berries were likely to be determined by a combination of grape varieties and environmental factors.
Collapse
Affiliation(s)
- Junjie Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province, 450000, P. R. China.,Collaborative Innovation Center for Food Production and Safety of Henan Province, Zhengzhou 450002, Henan Province, P. R. China
| | - Yimin Shang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province, 450000, P. R. China
| | - Jinyong Chen
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, Henan Province, P. R. China
| | - Brigitte Brunel
- LSTM, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Shanshan Peng
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province, 450000, P. R. China
| | - Shuo Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province, 450000, P. R. China
| | - Entao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, C.P. 11340, Ciudad de México, México
| |
Collapse
|
4
|
González-Alonso I, Walker ME, Vallejo-Pascual ME, Naharro-Carrasco G, Jiranek V. Capturing yeast associated with grapes and spontaneous fermentations of the Negro Saurí minority variety from an experimental vineyard near León. Sci Rep 2021; 11:3748. [PMID: 33580153 PMCID: PMC7881026 DOI: 10.1038/s41598-021-83123-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/27/2021] [Indexed: 11/23/2022] Open
Abstract
‘Microbial terroir’ relates to the influence of autochthonous yeasts associated with a grape cultivar on the resultant wine. Geographic region, vineyard site and topography, climate and vintage influence the biodiversity of these microbial communities. Current research focus attempts to correlate their ‘microbial fingerprint’ to the sensorial and chemical characteristics of varietal wines from distinct geographical wine regions. This study focuses on the minor red grape variety, Negro Saurí, which has seen a resurgence in the León Appellation of Origin in Spain as a varietal wine. An experimental vineyard at Melgarajo S.A. (42° 15′ 48.68_N 5° 9′ 56.66_W) was sampled over four consecutive vintages, with autochthonous yeasts being isolated from grapes, must and pilot-scale un-inoculated fermentations, and identified by ITS sequencing. Forty-nine isolates belonging to Metschnikowia pulcherrima, Lachancea thermotolerans, Hanseniaspora uvarum and Torulaspora delbrueckii were isolated from grapes and must, and early stages of fermentation dependent on seasonal variation. Saccharomyces cerevisiae predominated throughout fermentation, as a heterogeneous and dynamic population, with seven major biotypes identified amongst 110 isolates across four consecutive vintages. Twenty-four S. cerevisiae isolates representing five strains dominated in two or more vintages. Their persistence through fermentation warrants further validation of their oenological properties as starter cultures.
Collapse
Affiliation(s)
| | | | | | | | - Vladimir Jiranek
- Department of Wine Science, The University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia. .,Australian Research Council Training Centre for Innovative Wine Production, Adelaide, Australia.
| |
Collapse
|
5
|
Abdullabekova DA, Magomedova ES, Aliverdieva DA, Kachalkin AV. Yeast Communities of Vineyards in Dagestan: Ecological, Taxonomic, and Genetic Characteristics. BIOL BULL+ 2020. [DOI: 10.1134/s1062359020030024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Reduction of Sulfur Compounds through Genetic Improvement of Native Saccharomyces cerevisiae Useful for Organic and Sulfite-Free Wine. Foods 2020; 9:foods9050658. [PMID: 32443690 PMCID: PMC7278856 DOI: 10.3390/foods9050658] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/13/2020] [Accepted: 05/17/2020] [Indexed: 01/04/2023] Open
Abstract
Sulfites and sulfides are produced by yeasts in different amounts depending on different factors, including growth medium and specific strain variability. In natural must, some strains can produce an excess of sulfur compounds that confer unpleasant smells, inhibit malolactic fermentation and lead to health concerns for consumers. In organic wines and in sulfite-free wines the necessity to limit or avoid the presence of sulfide and sulfite requires the use of selected yeast strains that are low producers of sulfur compounds, with good fermentative and aromatic aptitudes. In the present study, exploiting the sexual mass-mating spores’ recombination of a native Saccharomyces cerevisiae strain previously isolated from grape, three new S. cerevisiae strains were selected. They were characterized by low sulfide and sulfite production and favorable aromatic imprinting. This approach, that occurs spontaneously also in nature, allowed us to obtain new native S. cerevisiae strains with desired characteristics that could be proposed as new starters for organic and sulfite-free wine production, able to control sulfur compound production and to valorize specific wine types.
Collapse
|
7
|
Ruiz-Moyano S, Esperilla A, Hernández A, Benito MJ, Casquete R, Martín-Vertedor D, Pérez-Nevado F. Application of ISSR-PCR as a rapid method for clustering and typing of yeasts isolated from table olives. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.04.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Ganucci D, Guerrini S, Mangani S, Vincenzini M, Granchi L. Quantifying the Effects of Ethanol and Temperature on the Fitness Advantage of Predominant Saccharomyces cerevisiae Strains Occurring in Spontaneous Wine Fermentations. Front Microbiol 2018; 9:1563. [PMID: 30057578 PMCID: PMC6053494 DOI: 10.3389/fmicb.2018.01563] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/25/2018] [Indexed: 11/13/2022] Open
Abstract
Different Saccharomyces cerevisiae strains are simultaneously or in succession involved in spontaneous wine fermentations. In general, few strains occur at percentages higher than 50% of the total yeast isolates (predominant strains), while a variable number of other strains are present at percentages much lower (secondary strains). Since S. cerevisiae strains participating in alcoholic fermentations may differently affect the chemical and sensory qualities of resulting wines, it is of great importance to assess whether the predominant strains possess a "dominant character." Therefore, the aim of this study was to investigate whether the predominance of some S. cerevisiae strains results from a better adaptation capability (fitness advantage) to the main stress factors of oenological interest: ethanol and temperature. Predominant and secondary S. cerevisiae strains from different wineries were used to evaluate the individual effect of increasing ethanol concentrations (0-3-5 and 7% v/v) as well as the combined effects of different ethanol concentrations (0-3-5 and 7% v/v) at different temperature (25-30 and 35°C) on yeast growth. For all the assays, the lag phase period, the maximum specific growth rate (μmax) and the maximum cell densities were estimated. In addition, the fitness advantage between the predominant and secondary strains was calculated. The findings pointed out that all the predominant strains showed significantly higher μmax and/or lower lag phase values at all tested conditions. Hence, S. cerevisiae strains that occur at higher percentages in spontaneous alcoholic fermentations are more competitive, possibly because of their higher capability to fit the progressively changing environmental conditions in terms of ethanol concentrations and temperature.
Collapse
Affiliation(s)
- Donatella Ganucci
- FoodMicroTeam, Academic Spin-Off of the University of Florence, Florence, Italy
| | - Simona Guerrini
- FoodMicroTeam, Academic Spin-Off of the University of Florence, Florence, Italy
| | - Silvia Mangani
- FoodMicroTeam, Academic Spin-Off of the University of Florence, Florence, Italy
| | - Massimo Vincenzini
- Department of Management of Agricultural, Food and Forestry Systems (GESAAF), University of Florence, Florence, Italy
| | - Lisa Granchi
- Department of Management of Agricultural, Food and Forestry Systems (GESAAF), University of Florence, Florence, Italy
| |
Collapse
|
9
|
Agustini BC, da Silva GA, Bonfim TMB. MALDI-TOF MS Supplementary database for species identification employing the yeast diversity encountered on southern Brazil grapes. Folia Microbiol (Praha) 2018; 63:685-693. [PMID: 29752627 DOI: 10.1007/s12223-018-0607-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 04/25/2018] [Indexed: 10/16/2022]
Abstract
The study of grape microflora is of interest when autochthonous yeasts, which are related to typical wine characteristics, are intended to be used in winemaking. The election of matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS) as the first method for yeast identification was based on its accuracy and rapidity compared to alternative laboratory protocols for identification. The aims of this study are to consolidate the MALDI-TOF MS Supplementary database for environmental yeasts already constructed, to expand it through the addition of standard spectra of not included yeast species, and to discuss the grape microflora encountered in Southern Brazil. A total of 358 strains, isolated from grape berries, were submitted to protein profiling employing Biotyper and Supplementary database. Molecular biology techniques were used as alternatives to identify 6.4% of strains not promptly designated by protein profiling. These strains corresponded to the species Candida californica, Zygoascus meyerae, Candida akabanensis, Candida azyma, and Hanseniaspora vineae. The MALDI-TOF MS spectra of the identified species were added to Supplementary database. The presented results strengthen the need for further expansion of the mass spectra database to broaden its microbiological application.
Collapse
Affiliation(s)
- Bruna Carla Agustini
- Laboratory of Applied Microbiology, Embrapa Grape and Wine, Bento Gonçalves, RS, Brazil.
| | | | - Tania Maria Bordin Bonfim
- Laboratory of Enzymology and Fermentation Technology, Pharmacy Department, Federal University of Paraná, Curitiba, PR, Brazil
| |
Collapse
|
10
|
Zhu L, Xue J. Modern technology homogenizes enological traits of indigenous Saccharomyces cerevisiae strains associated with Msalais, a traditional wine in China. World J Microbiol Biotechnol 2017; 33:63. [PMID: 28243984 DOI: 10.1007/s11274-017-2227-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 02/13/2017] [Indexed: 10/20/2022]
Abstract
In this study, we performed a pilot-scale evaluation of the enological characteristics of indigenous Saccharomyces cerevisiae strains associated with Msalais, a traditional Chinese wine produced by a unique technology of boiling grape juice prior to spontaneous fermentation. Technical and sensory characteristics of top ten indigenous strains previously identified by us by screening a collection of 436 indigenous S. cerevisiae strains (Zhu et al. 2016) were assayed in a traditional craft workshop (TCW) and a modern plant (MP). The use of these strains reduced the spontaneous fermentation (Spo F) period by 6-15 days, and resulted in higher sugar and lower alcohol content in TCW Msalais than in MP Msalais. Sensory scores of Msalais fermented by the ten strains were higher than those of wine produced with a commercial strain cy3079, varying in TCW fermentations and significantly different from Spo F, but homogenous for all MP fermentations. Four strains were extensively screened for use in industrial Msalais production. We conclude that modern technology homogenizes enological traits of indigenous strains while traditional craftsmanship maintains their enological diversity. Some strains domesticated in the course of both processes are suitable for industrial Msalais production.
Collapse
Affiliation(s)
- Lixia Zhu
- College of Life Science, Tarim University/Xinjiang Production and Construction Group Key Laboratory of Agricultural Products Processing, Xinjiang South, Alar, 843300, Xinjiang, People's Republic of China.
| | - Julan Xue
- College of Life Science, Tarim University/Xinjiang Production and Construction Group Key Laboratory of Agricultural Products Processing, Xinjiang South, Alar, 843300, Xinjiang, People's Republic of China
| |
Collapse
|
11
|
Petruzzi L, Bevilacqua A, Corbo MR, Speranza B, Capozzi V, Sinigaglia M. A Focus on Quality and Safety Traits of Saccharomyces cerevisiae Isolated from Uva di Troia Grape Variety. J Food Sci 2016; 82:124-133. [PMID: 27871123 DOI: 10.1111/1750-3841.13549] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/11/2016] [Accepted: 10/08/2016] [Indexed: 11/30/2022]
Abstract
The aim of this work was to study Saccharomyces cerevisiae strains isolated from vineyards of the autochthonous grape variety "Uva di Troia" located in different geographical areas of Apulian region (Southern Italy). Four hundred isolates were studied in relation to H2 S production, β-glucosidase activity, and pigments adsorption from grape skin. Thus, 81 isolates were selected, identified through the amplification of the interdelta region, and grouped in 19 biotypes (from I to XIX). The enological performances were assessed to determine the content of residual sugars, ethanol, glycerol, and volatile acidity, after a microfermentation in Uva di Troia must for each isolate. The ability to remove ochratoxin A (OTA) was studied as an additional tool to select promising strains. A geographical-dependent technological variability was found for glycerol and volatile acidity, suggesting that the different indigenous yeasts can have a peculiar impact on the final characteristics of the corresponding wine ("Nero di Troia"). Only 2 biotypes (VI and XVII) were able to remove OTA throughout fermentation, with the highest reduction achieved by the biotype XVII (ca. 30%).
Collapse
Affiliation(s)
- Leonardo Petruzzi
- Dept. of the Science of Agriculture, Food and Environment, Univ. of Foggia, Via Napoli 25, 71122, Foggia, Italy
| | - Antonio Bevilacqua
- Dept. of the Science of Agriculture, Food and Environment, Univ. of Foggia, Via Napoli 25, 71122, Foggia, Italy
| | - Maria Rosaria Corbo
- Dept. of the Science of Agriculture, Food and Environment, Univ. of Foggia, Via Napoli 25, 71122, Foggia, Italy
| | - Barbara Speranza
- Dept. of the Science of Agriculture, Food and Environment, Univ. of Foggia, Via Napoli 25, 71122, Foggia, Italy
| | - Vittorio Capozzi
- Dept. of the Science of Agriculture, Food and Environment, Univ. of Foggia, Via Napoli 25, 71122, Foggia, Italy
| | - Milena Sinigaglia
- Dept. of the Science of Agriculture, Food and Environment, Univ. of Foggia, Via Napoli 25, 71122, Foggia, Italy
| |
Collapse
|
12
|
Application of high-resolution melting analysis for differentiation of spoilage yeasts. J Microbiol 2016; 54:618-625. [PMID: 27572511 DOI: 10.1007/s12275-016-6017-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 06/24/2016] [Accepted: 07/20/2016] [Indexed: 10/21/2022]
Abstract
A new method based on high resolution melting (HRM) analysis was developed for the differentiation and classification of the yeast species that cause food spoilage. A total 134 strains belonging to 21 different yeast species were examined to evaluate the discriminative power of HRM analysis. Two different highly variable DNA regions on the 26 rRNA gene were targeted to produce the HRM profiles of each strain. HRM-based grouping was compared and confirmed by (GTG)5 rep-PCR fingerprinting analysis. All of the yeast species belonging to the genera Pichia, Candida, Kazachstania, Kluyveromyces, Debaryomyces, Dekkera, Saccharomyces, Torulaspora, Ustilago, and Yarrowia, which were produced as species-specific HRM profiles, allowed discrimination at species and/or strain level. The HRM analysis of both target regions provided successful discrimination that correlated with rep-PCR fingerprinting analysis. Consequently, the HRM analysis has the potential for use in the rapid and accurate classification and typing of yeast species isolated from different foods to determine their sources and routes as well as to prevent contamination.
Collapse
|
13
|
Capece A, Granchi L, Guerrini S, Mangani S, Romaniello R, Vincenzini M, Romano P. Diversity of Saccharomyces cerevisiae Strains Isolated from Two Italian Wine-Producing Regions. Front Microbiol 2016; 7:1018. [PMID: 27446054 PMCID: PMC4928102 DOI: 10.3389/fmicb.2016.01018] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/15/2016] [Indexed: 11/13/2022] Open
Abstract
Numerous studies, based on different molecular techniques analyzing DNA polymorphism, have provided evidence that indigenous Saccharomyces cerevisiae populations display biogeographic patterns. Since the differentiated populations of S. cerevisiae seem to be responsible for the regional identity of wine, the aim of this work was to assess a possible relationship between the diversity and the geographical origin of indigenous S. cerevisiae isolates from two different Italian wine-producing regions (Tuscany and Basilicata). For this purpose, sixty-three isolates from Aglianico del Vulture grape must (main cultivar in the Basilicata region) and from Sangiovese grape must (main cultivar in the Tuscany region) were characterized genotypically, by mitochondrial DNA restriction analysis and MSP-PCR by using (GTG)5 primers, and phenotypically, by determining technological properties and metabolic compounds of oenological interest after alcoholic fermentation. All the S. cerevisiae isolates from each region were inoculated both in must obtained from Aglianico grape and in must obtained from Sangiovese grape to carry out fermentations at laboratory-scale. Numerical analysis of DNA patterns resulting from both molecular methods and principal component analysis of phenotypic data demonstrated a high diversity among the S. cerevisiae strains. Moreover, a correlation between genotypic and phenotypic groups and geographical origin of the strains was found, supporting the concept that there can be a microbial aspect to terroir. Therefore, exploring the diversity of indigenous S. cerevisiae strains can allow developing tailored strategies to select wine yeast strains better adapted to each viticultural area.
Collapse
Affiliation(s)
- Angela Capece
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, PotenzaItaly
| | - Lisa Granchi
- Department of Management of Agricultural, Food and Forestry Systems, University of Florence, FlorenceItaly
| | - Simona Guerrini
- Department of Management of Agricultural, Food and Forestry Systems, University of Florence, FlorenceItaly
| | - Silvia Mangani
- Department of Management of Agricultural, Food and Forestry Systems, University of Florence, FlorenceItaly
| | - Rossana Romaniello
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, PotenzaItaly
| | - Massimo Vincenzini
- Department of Management of Agricultural, Food and Forestry Systems, University of Florence, FlorenceItaly
| | - Patrizia Romano
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, PotenzaItaly
| |
Collapse
|
14
|
Selection of indigenous Saccharomyces cerevisiae strains in Shanshan County (Xinjiang, China) for winemaking and their aroma-producing characteristics. World J Microbiol Biotechnol 2015; 31:1781-92. [DOI: 10.1007/s11274-015-1929-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 08/23/2015] [Indexed: 11/26/2022]
|
15
|
Masneuf-Pomarede I, Juquin E, Miot-Sertier C, Renault P, Laizet Y, Salin F, Alexandre H, Capozzi V, Cocolin L, Colonna-Ceccaldi B, Englezos V, Girard P, Gonzalez B, Lucas P, Mas A, Nisiotou A, Sipiczki M, Spano G, Tassou C, Bely M, Albertin W. The yeastStarmerella bacillaris(synonymCandida zemplinina) shows high genetic diversity in winemaking environments. FEMS Yeast Res 2015; 15:fov045. [DOI: 10.1093/femsyr/fov045] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2015] [Indexed: 01/12/2023] Open
|
16
|
Petruzzi L, Bevilacqua A, Corbo MR, Garofalo C, Baiano A, Sinigaglia M. Selection of autochthonous Saccharomyces cerevisiae strains as wine starters using a polyphasic approach and ochratoxin A removal. J Food Prot 2014; 77:1168-77. [PMID: 24988024 DOI: 10.4315/0362-028x.jfp-13-384] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Over the last few years, the selection of autochthonous strains of Saccharomyces cerevisiae as wine starters has been studied; however, researchers have not focused on the ability to remove ochratoxin A (OTA) as a possible trait to use in oenological characterization. In this article, a polyphasic approach, including yeast genotyping, evaluation of phenotypic traits, and fermentative performance in a model system (temperature, 25 and 30°C; sugar level, 200 and 250 g liter(-1)), was proposed as a suitable approach to select wine starters of S. cerevisiae from 30 autochthonous isolates from Uva di Troia cv., a red wine grape variety grown in the Apulian region (Southern Italy). The ability to remove OTA, a desirable trait to improve the safety of wine, was also assessed using enzyme-linked immunosorbent assay. The isolates, identified by PCR-restriction fragment length polymorphism analysis of the internal transcribed spacer region and DNA sequencing, were differentiated at strain level through the amplification of the interdelta region; 11 biotypes (I to XI) were identified and further studied. Four biotypes (II, III, V, VIII) were able to reduce OTA, with the rate of toxin removal from the medium (0.6 to 42.8%, wt/vol) dependent upon the strain and the temperature, and biotypes II and VIII were promising in terms of ethanol, glycerol, and volatile acidity production, as well as for their enzymatic and stress resistance characteristics. For the first time, the ability of S. cerevisiae to remove OTA during alcoholic fermentation was used as an additional trait in the yeast-selection program; the results could have application for evaluating the potential of autochthonous S. cerevisiae strains as starter cultures for the production of typical wines with improved quality and safety.
Collapse
Affiliation(s)
- Leonardo Petruzzi
- Department of the Science of Agriculture, Food and Environment (SAFE), University of Foggia, Via Napoli 25, 71122 Foggia, Italy
| | - Antonio Bevilacqua
- Department of the Science of Agriculture, Food and Environment (SAFE), University of Foggia, Via Napoli 25, 71122 Foggia, Italy. .
| | - Maria Rosaria Corbo
- Department of the Science of Agriculture, Food and Environment (SAFE), University of Foggia, Via Napoli 25, 71122 Foggia, Italy
| | - Carmela Garofalo
- Department of the Science of Agriculture, Food and Environment (SAFE), University of Foggia, Via Napoli 25, 71122 Foggia, Italy
| | - Antonietta Baiano
- Department of the Science of Agriculture, Food and Environment (SAFE), University of Foggia, Via Napoli 25, 71122 Foggia, Italy
| | - Milena Sinigaglia
- Department of the Science of Agriculture, Food and Environment (SAFE), University of Foggia, Via Napoli 25, 71122 Foggia, Italy
| |
Collapse
|
17
|
|
18
|
Petruzzi L, Bevilacqua A, Baiano A, Beneduce L, Corbo MR, Sinigaglia M. In vitro removal of ochratoxin A by two strains of Saccharomyces cerevisiae and their performances under fermentative and stressing conditions. J Appl Microbiol 2013; 116:60-70. [PMID: 24112596 DOI: 10.1111/jam.12350] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/28/2013] [Accepted: 09/13/2013] [Indexed: 11/28/2022]
Abstract
AIMS The aim of this research was to study the effect of time, temperature, sugar content and addition of diammonium phosphate (DAP) on ochratoxin A (OTA) removal by two strains of Saccharomyces cerevisiae using a completely randomized design. METHODS AND RESULTS The strains were grown in a medium containing OTA (2 μg l(-1)), two sugar levels (200 and 250 g l(-1)), with or without DAP (300 mg l(-1)), and incubated at 25-30°C. The yeasts were able to decrease the toxin amount by c. 70%, with the highest removing effect observed after 3 days at 30°C in the presence of 250 g l(-1) of sugars and with DAP; after 10 days, the toxin was partially released into the medium. The strains produced high ethanol and glycerol contents, showed high tolerance to single/combined stress conditions and possessed β-d-glucosidase, pectinase and xylanase activities. CONCLUSIONS Ochratoxin A removal was affected by time, temperature, sugar and addition of DAP. Moreover, the phenomenon was reversible. SIGNIFICANCE AND IMPACT OF THE STUDY Ochratoxin A removal could be an interesting trait for the selection of promising strains; however, the strains removing efficiently the toxin could release it back; thus, the selection of the starter should take into account both the removal and the binding ability of OTA.
Collapse
Affiliation(s)
- L Petruzzi
- Department of the Science of Agriculture, Food and Environment (SAFE), University of Foggia, Foggia, Italy
| | | | | | | | | | | |
Collapse
|
19
|
Petruzzi L, Sinigaglia M, Corbo MR, Beneduce L, Bevilacqua A. Ochratoxin A removal by Saccharomyces cerevisiae strains: effect of wine-related physicochemical factors. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2013; 93:2110-2115. [PMID: 23254552 DOI: 10.1002/jsfa.6010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 10/31/2012] [Accepted: 11/26/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND This study investigated the effect of some physicochemical parameters on the removal of ochratoxin A (OTA) by yeasts. RESULTS Two wild strains of Saccharomyces cerevisiae (W47 and Y28) were used to assess OTA removal under various conditions of temperature, pH, ethanol content and incubation time. All samples were analysed for OTA concentration by enzyme-linked immunosorbent assay (ELISA). In addition, yeast oenological traits were investigated: qualitative and technological traits were assessed on appropriate laboratory media, while the main products of microfermentation (sugars, ethanol, glycerol, acetic acid) were evaluated by Fourier transform infrared spectroscopy (FTIR). The results showed OTA reduction by 36-42% in cultures containing 100 g L⁻¹ ethanol incubated at pH 3.5 and 37 °C. CONCLUSION OTA removal was affected by contact time, pH and ethanol content, as it was increased at low pH and by 100 g L⁻¹ ethanol. Moreover, the phenomenon was reversible, as OTA was lowest after 4 days, then it was partially released in the medium.
Collapse
Affiliation(s)
- Leonardo Petruzzi
- Department of Agriculture, Food and Environmental Science, University of Foggia, Foggia, Italy
| | | | | | | | | |
Collapse
|
20
|
Schuller D, Cardoso F, Sousa S, Gomes P, Gomes AC, Santos MAS, Casal M. Genetic diversity and population structure of Saccharomyces cerevisiae strains isolated from different grape varieties and winemaking regions. PLoS One 2012; 7:e32507. [PMID: 22393409 PMCID: PMC3290581 DOI: 10.1371/journal.pone.0032507] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 01/30/2012] [Indexed: 11/18/2022] Open
Abstract
We herein evaluate intraspecific genetic diversity of fermentative vineyard-associated S. cerevisiae strains and evaluate relationships between grape varieties and geographical location on populational structures. From the musts obtained from 288 grape samples, collected from two wine regions (16 vineyards, nine grape varieties), 94 spontaneous fermentations were concluded and 2820 yeast isolates were obtained that belonged mainly (92%) to the species S. cerevisiae. Isolates were classified in 321 strains by the use of ten microsatellite markers. A high strain diversity (8-43 strains per fermentation) was associated with high percentage (60-100%) of fermenting samples per vineyard, whereas a lower percentage of spontaneous fermentations (0-40%) corresponded to a rather low strain diversity (1-10 strains per fermentation).For the majority of the populations, observed heterozygosity (Ho) was about two to five times lower than the expected heterozygosity (He). The inferred ancestry showed a very high degree of admixture and divergence was observed between both grape variety and geographical region. Analysis of molecular variance showed that 81-93% of the total genetic variation existed within populations, while significant differentiation within the groups could be detected. Results from AMOVA analysis and clustering of allelic frequencies agree in the distinction of genetically more dispersed populations from the larger wine region compared to the less extended region. Our data show that grape variety is a driver of populational structures, because vineyards with distinct varieties harbor genetically more differentiated S. cerevisiae populations. Conversely, S. cerevisiae strains from vineyards in close proximity (5-10 km) that contain the same grape variety tend to be less divergent. Populational similarities did not correlate with the distance between vineyards of the two wine regions. Globally, our results show that populations of S. cerevisiae in vineyards may occur locally due to multi-factorial influences, one of them being the grape variety.
Collapse
Affiliation(s)
- Dorit Schuller
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal.
| | | | | | | | | | | | | |
Collapse
|
21
|
Iacumin L, Manzano M, Cecchini F, Orlic S, Zironi R, Comi G. Influence of specific fermentation conditions on natural microflora of pomace in "Grappa" production. World J Microbiol Biotechnol 2011; 28:1747-59. [PMID: 22805957 DOI: 10.1007/s11274-011-0989-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 12/19/2011] [Indexed: 11/29/2022]
Abstract
As reported in the European Community regulation, grappa is a spirit beverage made in Italy from marc that has been steam distilled or distilled after the addition of water. Grape marc from red grapes has already undergone alcoholic fermentation with the must and can be distilled immediately. Grape marc from white grapes does not contain ethanol but contains sugars that are fermented by spontaneous anaerobic fermentation during a storage period. The characteristic aroma of grappa consists of a large number of volatile compounds, which arise from various sources, the most important of which is yeast. Very few studies have been undertaken to characterize the natural populations of yeast during the fermentation of grape marc. The goal of this study was to understand how different pHs, temperatures and yeast starter cultures affect the growth and dynamics of yeast species involved in pomace fermentation, which could be the basis for improving the final quality of grappa production. We found that a temperature of 15°C has the greatest effect on improving the quality of the product. Unfortunately, due to the solid state of the grape marc and the impossibility of its mixing, it appears that acidification and the addition of yeast starter cultures during the silage period are not effective.
Collapse
Affiliation(s)
- Lucilla Iacumin
- Department of Food Science, University of Udine, via Sondrio 2/A, 33100, Udine, Italy.
| | | | | | | | | | | |
Collapse
|
22
|
Hyma KE, Saerens SM, Verstrepen KJ, Fay JC. Divergence in wine characteristics produced by wild and domesticated strains of Saccharomyces cerevisiae. FEMS Yeast Res 2011; 11:540-51. [PMID: 22093681 PMCID: PMC3262967 DOI: 10.1111/j.1567-1364.2011.00746.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 07/14/2011] [Accepted: 07/19/2011] [Indexed: 01/23/2023] Open
Abstract
The budding yeast Saccharomyces cerevisiae is the primary species used by wine makers to convert sugar into alcohol during wine fermentation. Saccharomyces cerevisiae is found in vineyards, but is also found in association with oak trees and other natural sources. Although wild strains of S. cerevisiae as well as other Saccharomyces species are also capable of wine fermentation, a genetically distinct group of S. cerevisiae strains is primarily used to produce wine, consistent with the idea that wine making strains have been domesticated for wine production. In this study, we demonstrate that humans can distinguish between wines produced using wine strains and wild strains of S. cerevisiae as well as its sibling species, Saccharomyces paradoxus. Wine strains produced wine with fruity and floral characteristics, whereas wild strains produced wine with earthy and sulfurous characteristics. The differences that we observe between wine and wild strains provides further evidence that wine strains have evolved phenotypes that are distinct from their wild ancestors and relevant to their use in wine production.
Collapse
Affiliation(s)
- Katie E Hyma
- Evolution, Ecology and Population Biology Program, Washington University, St. Louis, MO, USA.
| | | | | | | |
Collapse
|
23
|
Current awareness on yeast. Yeast 2010. [DOI: 10.1002/yea.1724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|