1
|
Li J, Liu B, Feng X, Zhang M, Ding T, Zhao Y, Wang C. Comparative proteome and volatile metabolome analysis of Aspergillus oryzae 3.042 and Aspergillus sojae 3.495 during koji fermentation. Food Res Int 2023; 165:112527. [PMID: 36869527 DOI: 10.1016/j.foodres.2023.112527] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/09/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023]
Abstract
Aspergillus oryzae 3.042 and Aspergillus sojae 3.495 are crucial starters for fermented soybean foods since their abundant secreted enzymes. This study aimed to compare the differences in protein secretion between A. oryzae 3.042 and A. sojae 3.495 during the soy sauce koji fermentation and the effect on volatile metabolites to understand the fermentation characteristics of the strains better. Label-free proteomics detected 210 differentially expressed proteins (DEPs) enriched in amino acid metabolism and protein folding, sorting and degradation pathways. Subsequently, extracellular enzyme analysis showed that three peptidases, including peptide hydrolase, dipeptidyl aminopeptidase, and peptidase S41, were up-regulated in A. sojae 3.495. Seven carbohydrases, including α-galactosidase, endo-arabinase, β-glucosidase, α-galactosidase, α-glucuronidase, arabinan-endo 1,5-α-l-arabinase, and endo-1,4-β-xylanase were up-regulated in A. oryzae 3.042, contributing to the difference in enzyme activity. Significantly different extracellular enzymes influenced the content of volatile alcohols, aldehydes and esters such as (R, R)-2,3-butanediol, 1-hexanol, hexanal, decanal, ethyl l-lactate and methyl myristate in both strains, which affected the type of aroma of koji. Overall, this study revealed the differences in molecular mechanisms between A. oryzae 3.042 and A. sojae 3.495 under solid-state fermentation, providing a reference for targeted enhancement strains.
Collapse
Affiliation(s)
- Jingyao Li
- "State Key Laboratory of Food Nutrition and Safety", Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, People Republic of China
| | - Bin Liu
- College of Biological and Environmental Engineering, Binzhou University, 391 Huanghe 5th Road, 256603 Binzhou City, Shandong Province, China
| | - Xiaojuan Feng
- "State Key Laboratory of Food Nutrition and Safety", Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, People Republic of China
| | - Mengli Zhang
- "State Key Laboratory of Food Nutrition and Safety", Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, People Republic of China
| | - Tingting Ding
- "State Key Laboratory of Food Nutrition and Safety", Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, People Republic of China
| | - Yue Zhao
- "State Key Laboratory of Food Nutrition and Safety", Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, People Republic of China
| | - Chunling Wang
- "State Key Laboratory of Food Nutrition and Safety", Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, People Republic of China.
| |
Collapse
|
3
|
Aspergillus nidulans: A Potential Resource of the Production of the Native and Heterologous Enzymes for Industrial Applications. Int J Microbiol 2020; 2020:8894215. [PMID: 32802076 PMCID: PMC7416255 DOI: 10.1155/2020/8894215] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 05/13/2020] [Accepted: 07/18/2020] [Indexed: 01/24/2023] Open
Abstract
Aspergillus nidulans is a filamentous fungus that is a potential resource for industrial enzymes. It is a versatile fungal cell factory that can synthesize various industrial enzymes such as cellulases, β-glucosidases, hemicellulases, laccases, lipases, proteases, β-galactosidases, tannases, keratinase, cutinases, and aryl alcohol oxidase. A. nidulans has shown the potential to utilize low-cost substrates such as wheat bran, rice straw, sugarcane bagasse, rice bran, coir pith, black gram residue, and chicken feathers to produce enzymes cost-effectively. A. nidulans has also been known as a model organism for the production of heterologous enzymes. Several studies reported genetically engineered strains of A. nidulans for the production of different enzymes. Native as well as heterologous enzymes of A. nidulans have been employed for various industrial processes.
Collapse
|
4
|
Ding C, Meng M, Jiang Y, Hou L. Improvement of the quality of soy sauce by reducing enzyme activity in Aspergillus oryzae. Food Chem 2019; 292:81-89. [PMID: 31054696 DOI: 10.1016/j.foodchem.2019.04.052] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 04/02/2019] [Accepted: 04/13/2019] [Indexed: 10/27/2022]
Abstract
How to effectively increase or decrease the ability of A. oryzae to produce enzymes was the key to improve the quality of soy sauce. However, multi-core property of A. oryzae resulted in genetic instability of the new strain. Here, A. oryzae 3.042-3 which can stably produce mononuclear spores was constructed based on A. oryzae 3.042. A. oryzae 3.042-3-c obtained by transformation of the fragment of cis-CreA into A. oryzae 3.042-3 exhibited genetic stability. The fragment containing the cis-acting and the promoter CreA from A. oryzae was connected to chromosome VII in A. oryzae 3.042-3-c. Compared with A. oryzae 3.042-3, the cellulase activity of A. oryzae 3.042-3-c was reduced by 50.5% and the pectinase activity was decreased by 10.0%. At the end of the soy sauce fermentation, the salt-free solid content of A. oryzae 3.042-3-c was higher 58.9% than that of A. oryzae 3.042-3. The kinds and contents of the flavor components of the soy sauce from the fermentation by A. oryzae 3.042-3-c were higher than those of the A. oryzae 3.042 and A. oryzae 3.042-3, especially in alcohols and esters. HEMF was only found in the soy sauce from A. oryzae 3.042-3-c. The results indicated that the new strain A. oryzae 3.042-3-c could improve the quality of soy sauce from the low-salt solid fermentation by decreasing enzyme activity of cellulase and pectinase.
Collapse
Affiliation(s)
- Chengfang Ding
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economic and Technological, Tianjin 300457, China
| | - Meng Meng
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economic and Technological, Tianjin 300457, China
| | - Yuyang Jiang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economic and Technological, Tianjin 300457, China
| | - Lihua Hou
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economic and Technological, Tianjin 300457, China.
| |
Collapse
|
6
|
Kupski L, de Carvalho Silvello MA, Fontes MRV, Lima TS, Treichel H, Badiale Furlong E. R
. oryzae
Cellulases: A New Approach to Degrading Lignocellulosic Material. J Food Biochem 2015. [DOI: 10.1111/jfbc.12097] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Larine Kupski
- Escola de Química e Alimentos; Laboratório de Ciência de Alimentos; Universidade Federal do Rio Grande - FURG; Rua Eng. Alfredo Huch 475 Centro 96201-900 Rio Grande Rio Grande do Sul Brasil
| | - Maria Augusta de Carvalho Silvello
- Escola de Química e Alimentos; Laboratório de Ciência de Alimentos; Universidade Federal do Rio Grande - FURG; Rua Eng. Alfredo Huch 475 Centro 96201-900 Rio Grande Rio Grande do Sul Brasil
| | - Milena Ramos Vaz Fontes
- Escola de Química e Alimentos; Laboratório de Ciência de Alimentos; Universidade Federal do Rio Grande - FURG; Rua Eng. Alfredo Huch 475 Centro 96201-900 Rio Grande Rio Grande do Sul Brasil
| | - Tiago Silva Lima
- Escola de Química e Alimentos; Laboratório de Ciência de Alimentos; Universidade Federal do Rio Grande - FURG; Rua Eng. Alfredo Huch 475 Centro 96201-900 Rio Grande Rio Grande do Sul Brasil
| | - Helen Treichel
- Universidade Federal da Fronteira Sul; Erechim Rio Grande do Sul Brasil
| | - Eliana Badiale Furlong
- Escola de Química e Alimentos; Laboratório de Ciência de Alimentos; Universidade Federal do Rio Grande - FURG; Rua Eng. Alfredo Huch 475 Centro 96201-900 Rio Grande Rio Grande do Sul Brasil
| |
Collapse
|
7
|
Kazemi A, Rasoul-Amini S, Shahbazi M, Safari A, Ghasemi Y. Isolation, identification, and media optimization of high-level cellulase production by Bacillus sp. BCCS A3, in a fermentation system using response surface methodology. Prep Biochem Biotechnol 2014; 44:107-18. [PMID: 24152098 DOI: 10.1080/10826068.2013.792276] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Cellulases are important glycosyl hydrolase enzymes, which break down cellulose to β-glucose. They have been used widely in biotechnological processing such as bioethanol production. In this work we studied maximizing cellulase production by Bacillus sp. BCCS A3 using response surface methodology (RSM). A good result was attained with these conditions (% w/v): tryptone 0.1, Na₂PO₄ 0.25, (NH₄)₂SO₄ 0.2, MgSO₄ · 7H₂O 0.005, CaCl₂ 0.005, KH₂PO₄ 0.1, NaCl 0.1, sodium carboxymethylcellulose (CMC) 0.75, and pH 9. The cellulase activity in optimized medium was 49.80 U/ml. Moreover, high level of enzyme production was obtained by using fermentor system (50.30 U/ml). Thus, according to the obtained results, this statistical method provided quick identification and integration of key medium details for Bacillus sp. BCCS A3, leading to more cellulase production.
Collapse
Affiliation(s)
- Aboozar Kazemi
- a Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences , Shiraz , Iran
| | | | | | | | | |
Collapse
|