1
|
Peñuelas-Urquides K, Bermúdez de León M, Silva-Ramírez B, Castorena-Torres F, Molina-Salinas GM, Castro-Garza J, Becerril-Montes P, Del Olmo E, San Feliciano A, González-Escalante LA, Villarreal-Treviño L, Said-Fernández S. Two New Dihydrosphingosine Analogs Against Mycobacterium tuberculosis Affect gltA1, lprQ, and rpsO Expression. Front Microbiol 2021; 12:742867. [PMID: 34803964 PMCID: PMC8595602 DOI: 10.3389/fmicb.2021.742867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/12/2021] [Indexed: 11/24/2022] Open
Abstract
The emergence of multidrug-resistant (MDR) Mycobacterium tuberculosis strains threaten the control of tuberculosis. New antitubercular dihydrosphingosine analogs, named UCIs, have been evaluated in preclinical studies but their cellular and molecular mechanisms of action against M. tuberculosis are still unknown. The aim of this study was to evaluate the effect of UCI exposure on gene expression of drug-sensitive H37Rv and MDR CIBIN:UMF:15:99 clones of M. tuberculosis which were isolated, phenotypically, and genetically characterized, cultured to log phase and treated with UCI compounds; followed by total RNA isolation, reverse transcription and hybridization assays on Affymetrix genomic microarrays. Data were validated with RT-qPCR assays. As results, UCI-05 and UCI-14 exposure increased gltA1 expression in drug-sensitive H37Rv clones. Furthermore, UCI-05 increased lprQ expression in MDR CIBIN:UMF:15:99 M. tuberculosis clones while UCI-14 reduced the expression of this gene in drug-sensitive H37Rv clones. In addition, UCI-05 reduced rpsO expression in drug-sensitive H37Rv clones. We found gene expression alterations that suggest these molecules may alter carbon and lipid metabolism as well as interfere in the protein-producing machinery in M. tuberculosis.
Collapse
Affiliation(s)
- Katia Peñuelas-Urquides
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, Mexico.,Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza, Mexico
| | - Mario Bermúdez de León
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, Mexico
| | - Beatriz Silva-Ramírez
- Departamento de Inmunogenética, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, Mexico
| | | | - Gloria María Molina-Salinas
- Unidad de Investigación Médica Yucatán, Unidad Médica de Alta Especialidad, Hospital de Especialidades Centro Médico Nacional Ignacio García Téllez, Instituto Mexicano del Seguro Social, Mérida, Mexico
| | - Jorge Castro-Garza
- Laboratorio de Patogénesis Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, Mexico
| | - Pola Becerril-Montes
- Departamento de Biología Celular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, Mexico
| | - Esther Del Olmo
- Departamento de Ciencias Farmacéuticas, Área de Química Farmacéutica, Facultad de Farmacia, Centro de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, Salamanca, Spain
| | - Arturo San Feliciano
- Departamento de Ciencias Farmacéuticas, Área de Química Farmacéutica, Facultad de Farmacia, Centro de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, Salamanca, Spain
| | - Laura Adiene González-Escalante
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, Mexico
| | - Licet Villarreal-Treviño
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza, Mexico
| | - Salvador Said-Fernández
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León (UANL), Monterrey, Mexico
| |
Collapse
|
2
|
Lin S, Liang R, Zhang T, Yuan Y, Shen S, Ye H. Microarray analysis of the transcriptome of theEscherichia coli(E. coli) regulated by cinnamaldehyde (CMA). FOOD AGR IMMUNOL 2017. [DOI: 10.1080/09540105.2017.1300875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Songyi Lin
- College of Food Science and Technology, Jilin University, Changchun, People’s Republic of China
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian, People’s Republic of China
| | - Rong Liang
- College of Food Science and Technology, Jilin University, Changchun, People’s Republic of China
| | - Tiehua Zhang
- College of Food Science and Technology, Jilin University, Changchun, People’s Republic of China
| | - Yuan Yuan
- College of Food Science and Technology, Jilin University, Changchun, People’s Republic of China
| | - Suxia Shen
- College of Food Science and Technology, Jilin University, Changchun, People’s Republic of China
| | - Haiqing Ye
- College of Food Science and Technology, Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
3
|
Widhalm JR, Rhodes D. Biosynthesis and molecular actions of specialized 1,4-naphthoquinone natural products produced by horticultural plants. HORTICULTURE RESEARCH 2016; 3:16046. [PMID: 27688890 PMCID: PMC5030760 DOI: 10.1038/hortres.2016.46] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 08/23/2016] [Indexed: 05/20/2023]
Abstract
The 1,4-naphthoquinones (1,4-NQs) are a diverse group of natural products found in every kingdom of life. Plants, including many horticultural species, collectively synthesize hundreds of specialized 1,4-NQs with ecological roles in plant-plant (allelopathy), plant-insect and plant-microbe interactions. Numerous horticultural plants producing 1,4-NQs have also served as sources of traditional medicines for hundreds of years. As a result, horticultural species have been at the forefront of many basic studies conducted to understand the metabolism and function of specialized plant 1,4-NQs. Several 1,4-NQ natural products derived from horticultural plants have also emerged as promising scaffolds for developing new drugs. In this review, the current understanding of the core metabolic pathways leading to plant 1,4-NQs is provided with additional emphasis on downstream natural products originating from horticultural species. An overview on the biochemical mechanisms of action, both from an ecological and pharmacological perspective, of 1,4-NQs derived from horticultural plants is also provided. In addition, future directions for improving basic knowledge about plant 1,4-NQ metabolism are discussed.
Collapse
Affiliation(s)
- Joshua R Widhalm
- Department of Horticulture and Landscape Architecture, Purdue University, 625 Agriculture Mall Drive, West Lafayette, IN 47907-2010, USA
- ()
| | - David Rhodes
- Department of Horticulture and Landscape Architecture, Purdue University, 625 Agriculture Mall Drive, West Lafayette, IN 47907-2010, USA
| |
Collapse
|
4
|
Uc-Cachón AH, Borges-Argáez R, Said-Fernández S, Vargas-Villarreal J, González-Salazar F, Méndez-González M, Cáceres-Farfán M, Molina-Salinas GM. Naphthoquinones isolated from Diospyros anisandra exhibit potent activity against pan-resistant first-line drugs Mycobacterium tuberculosis strains. Pulm Pharmacol Ther 2013; 27:114-20. [PMID: 23968826 DOI: 10.1016/j.pupt.2013.08.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 08/04/2013] [Accepted: 08/09/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND AND OBJECTIVES The recent emergence of multidrug-resistant (MDR), extensively drug-resistant (XDR), and totally drug-resistant (TDR) Mycobacterium tuberculosis (MTB) strains have further complicated the control of tuberculosis (TB). There is an urgent need of new molecules candidates to be developed as novel, active, and less toxic anti-tuberculosis (anti-TB) drugs. Medicinal plants have been an excellent source of leads for the development of drugs, particularly as anti-infective agents. In previous studies, the non-polar extract of Diospyros anisandra showed potent anti-TB activity, and three monomeric and five dimeric naphthoquinones have been obtained. In this study, we performed bioguided chemical fractionation and the isolation of eight naphthoquinones from D. anisandra and their evaluation of anti-TB and cytotoxic activities against mammalian cells. METHODS The n-hexane crude extract from the stem bark of the plant was obtained by maceration and liquid-liquid fractionation. The isolation of naphthoquinones was carried out by chromatographic methods and identified by gas chromatography and mass spectroscopy data analysis. Anti-TB activity was evaluated against two strains of MTB (H37Rv) susceptible to all five first-line anti-TB drugs and a clinical isolate that is resistant to these medications (pan-resistant, CIBIN 99) by measuring the minimal inhibitory concentration (MIC). Cytotoxicity of naphthoquinones was estimated against two mammalian cells, Vero line and primary cultures of human peripheral blood mononuclear (PBMC) cells, and their selectivity index (SI) was determined. RESULTS Plumbagin and its dimers maritinone and 3,3'-biplumbagin showed the strongest activity against both MTB strains (MIC = 1.56-3.33 μg/mL). The bioactivity of maritinone and 3,3'-biplumbagin were 32 times more potent than rifampicin against the pan-resistant strain, and both dimers showed to be non-toxic against PBMC and Vero cells. The SI of maritinone and 3,3'-biplumbagin on Vero cells was 74.34 and 194.11 against sensitive and pan-resistant MTB strains, respectively. CONCLUSION Maritinone and 3,3'-biplumbagin possess a very interesting potential for development as new drugs against M. tuberculosis, mainly resistant profile strains.
Collapse
Affiliation(s)
- Andrés Humberto Uc-Cachón
- Unidad de Biotecnología del Centro de Investigación Científica de Yucatán A.C., Calle 43, No. 130, Col. Chuburná de Hidalgo, CP 97200 Mérida, Yucatán, Mexico.
| | - Rocío Borges-Argáez
- Unidad de Biotecnología del Centro de Investigación Científica de Yucatán A.C., Calle 43, No. 130, Col. Chuburná de Hidalgo, CP 97200 Mérida, Yucatán, Mexico.
| | - Salvador Said-Fernández
- División de Biología Celular y Molecular, Centro de Investigación Biomédica del Noreste, IMSS, San Luis Potosí y 2 de Abril, Col. Independencia, CP 65720 Monterrey, Nuevo León, Mexico.
| | - Javier Vargas-Villarreal
- División de Biología Celular y Molecular, Centro de Investigación Biomédica del Noreste, IMSS, San Luis Potosí y 2 de Abril, Col. Independencia, CP 65720 Monterrey, Nuevo León, Mexico.
| | - Francisco González-Salazar
- División de Biología Celular y Molecular, Centro de Investigación Biomédica del Noreste, IMSS, San Luis Potosí y 2 de Abril, Col. Independencia, CP 65720 Monterrey, Nuevo León, Mexico; Departamento de Ciencias Básicas, División de Ciencia de la Salud, Universidad de Monterrey, Ave. Ignacio Morones Prieto 4500 Pte., CP 66238 San Pedro Garza García, Nuevo León, Mexico.
| | - Martha Méndez-González
- Unidad de Recursos Naturales del Centro de Investigación Científica de Yucatán A.C., Calle 43, No. 130, Col. Chuburná de Hidalgo, CP 97200 Mérida, Yucatán, Mexico.
| | - Mirbella Cáceres-Farfán
- Unidad de Biotecnología del Centro de Investigación Científica de Yucatán A.C., Calle 43, No. 130, Col. Chuburná de Hidalgo, CP 97200 Mérida, Yucatán, Mexico.
| | - Gloria María Molina-Salinas
- División de Biología Celular y Molecular, Centro de Investigación Biomédica del Noreste, IMSS, San Luis Potosí y 2 de Abril, Col. Independencia, CP 65720 Monterrey, Nuevo León, Mexico.
| |
Collapse
|
5
|
Genome-wide expression profiling of the response to linezolid in Mycobacterium tuberculosis. Curr Microbiol 2012; 64:530-8. [PMID: 22388809 DOI: 10.1007/s00284-012-0104-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Accepted: 02/03/2012] [Indexed: 12/30/2022]
Abstract
Tuberculosis (TB) is still one of the most common causes of death in the world. The emergence of multidrug-resistant and extensively drug-resistant (XDR-TB) Mycobacterium tuberculosis (M. tuberculosis) strains has increased the importance of searching for alternative targets to develop new antimycobacterial drugs. Linezolid, the first of oxazolidinones, is active in vitro against M. tuberculosis, but the response mechanisms of M. tuberculosis to linezolid are still poorly understood. To reveal the possible mechanism of action of linezolid against M. tuberculosis, commercial oligonucleotide microarrays were used to analyze the genome-wide transcriptional changes triggered by treatment with subinhibitory concentrations of linezolid. Quantitative real-time RT-PCR was performed for selected genes to verify the microarray results. A total of 729 genes were found to be differentially regulated by linezolid. Among these, 318 genes were upregulated, and 411 genes were downregulated. A number of important genes were significantly regulated that are involved in various pathways, such as protein synthesis, sulfite metabolism, and genes involved in the cell envelope and virulence. This genome-wide transcriptomics approach produced the first insights into the response of M. tuberculosis to a linezolid challenge.
Collapse
|