1
|
Wang J, Cui X, Liang L, Li J, Pang B, Li J. Advances in DNA-based electrochemical biosensors for the detection of foodborne pathogenic bacteria. Talanta 2024; 275:126072. [PMID: 38615455 DOI: 10.1016/j.talanta.2024.126072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/18/2024] [Accepted: 04/06/2024] [Indexed: 04/16/2024]
Abstract
The detection of foodborne pathogenic bacteria is critical in preventing foodborne diseases. DNA-based electrochemical biosensors, with the merits of high sensitivity and short detection time, provide an effective detecting method for foodborne pathogens, attracting significant interest for the past few years. This review mainly describes the important research progress of DNA-based electrochemical biosensors for the detection of foodborne pathogenic bacteria through four perspectives: representative foodborne pathogens detection using electrochemical approaches, DNA immobilization strategies of aptamers, DNA-based signal amplification strategies used in electrochemical DNA sensors, and functional DNA used in electrochemical DNA sensors. Finally, perspectives and challenges are presented in this field. This review will contribute to DNA-based electrochemical biosensor in enhancing the nucleic acid signal amplification.
Collapse
Affiliation(s)
- Jun Wang
- School of Public Health, Jilin University, Changchun, Jilin, 130021, China
| | - Xueting Cui
- School of Public Health, Jilin University, Changchun, Jilin, 130021, China
| | - Lanqian Liang
- School of Public Health, Jilin University, Changchun, Jilin, 130021, China
| | - Juan Li
- School of Public Health, Jilin University, Changchun, Jilin, 130021, China.
| | - Bo Pang
- School of Public Health, Jilin University, Changchun, Jilin, 130021, China.
| | - Jinhua Li
- School of Public Health, Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
2
|
Nemati S, Shalileh F, Mirjalali H, Omidfar K. Toward waterborne protozoa detection using sensing technologies. Front Microbiol 2023; 14:1118164. [PMID: 36910193 PMCID: PMC9999019 DOI: 10.3389/fmicb.2023.1118164] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/30/2023] [Indexed: 03/14/2023] Open
Abstract
Drought and limited sufficient water resources will be the main challenges for humankind during the coming years. The lack of water resources for washing, bathing, and drinking increases the use of contaminated water and the risk of waterborne diseases. A considerable number of waterborne outbreaks are due to protozoan parasites that may remain active/alive in harsh environmental conditions. Therefore, a regular monitoring program of water resources using sensitive techniques is needed to decrease the risk of waterborne outbreaks. Wellorganized point-of-care (POC) systems with enough sensitivity and specificity is the holy grail of research for monitoring platforms. In this review, we comprehensively gathered and discussed rapid, selective, and easy-to-use biosensor and nanobiosensor technologies, developed for the early detection of common waterborne protozoa.
Collapse
Affiliation(s)
- Sara Nemati
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzaneh Shalileh
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kobra Omidfar
- Biosensor Research Center, Endocrinology and Metabolism Molecular–Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Ferrari AGM, Crapnell RD, Banks CE. Electroanalytical Overview: Electrochemical Sensing Platforms for Food and Drink Safety. BIOSENSORS 2021; 11:291. [PMID: 34436093 PMCID: PMC8392528 DOI: 10.3390/bios11080291] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022]
Abstract
Robust, reliable, and affordable analytical techniques are essential for screening and monitoring food and water safety from contaminants, pathogens, and allergens that might be harmful upon consumption. Recent advances in decentralised, miniaturised, and rapid tests for health and environmental monitoring can provide an alternative solution to the classic laboratory-based analytical techniques currently utilised. Electrochemical biosensors offer a promising option as portable sensing platforms to expedite the transition from laboratory benchtop to on-site analysis. A plethora of electroanalytical sensor platforms have been produced for the detection of small molecules, proteins, and microorganisms vital to ensuring food and drink safety. These utilise various recognition systems, from direct electrochemical redox processes to biological recognition elements such as antibodies, enzymes, and aptamers; however, further exploration needs to be carried out, with many systems requiring validation against standard benchtop laboratory-based techniques to offer increased confidence in the sensing platforms. This short review demonstrates that electroanalytical biosensors already offer a sensitive, fast, and low-cost sensor platform for food and drink safety monitoring. With continued research into the development of these sensors, increased confidence in the safety of food and drink products for manufacturers, policy makers, and end users will result.
Collapse
Affiliation(s)
| | | | - Craig E. Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK; (A.G.-M.F.); (R.D.C.)
| |
Collapse
|
4
|
Babaie P, Saadati A, Hasanzadeh M. Recent progress and challenges on the bioassay of pathogenic bacteria. J Biomed Mater Res B Appl Biomater 2020; 109:548-571. [PMID: 32924292 DOI: 10.1002/jbm.b.34723] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/20/2020] [Accepted: 09/02/2020] [Indexed: 12/19/2022]
Abstract
The present review (containing 242 references) illustrates the importance and application of optical and electrochemical methods as well as their performance improvement using various methods for the detection of pathogenic bacteria. The application of advanced nanomaterials including hyper branched nanopolymers, carbon-based materials and silver, gold and so on. nanoparticles for biosensing of pathogenic bacteria was also investigated. In addition, a summary of the applications of nanoparticle-based electrochemical biosensors for the identification of pathogenic bacteria has been provided and their advantages, detriments and future development capabilities was argued. Therefore, the main focus in the present review is to investigate the role of nanomaterials in the development of biosensors for the detection of pathogenic bacteria. In addition, type of nanoparticles, analytes, methods of detection and injection, sensitivity, matrix and method of tagging are also argued in detail. As a result, we have collected electrochemical and optical biosensors designed to detect pathogenic bacteria, and argued outstanding features, research opportunities, potential and prospects for their development, according to recently published research articles.
Collapse
Affiliation(s)
- Parinaz Babaie
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Food and Drug safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezoo Saadati
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Review of Electrochemical DNA Biosensors for Detecting Food Borne Pathogens. SENSORS 2019; 19:s19224916. [PMID: 31718098 PMCID: PMC6891683 DOI: 10.3390/s19224916] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022]
Abstract
The vital importance of rapid and accurate detection of food borne pathogens has driven the development of biosensor to prevent food borne illness outbreaks. Electrochemical DNA biosensors offer such merits as rapid response, high sensitivity, low cost, and ease of use. This review covers the following three aspects: food borne pathogens and conventional detection methods, the design and fabrication of electrochemical DNA biosensors and several techniques for improving sensitivity of biosensors. We highlight the main bioreceptors and immobilizing methods on sensing interface, electrochemical techniques, electrochemical indicators, nanotechnology, and nucleic acid-based amplification. Finally, in view of the existing shortcomings of electrochemical DNA biosensors in the field of food borne pathogen detection, we also predict and prospect future research focuses from the following five aspects: specific bioreceptors (improving specificity), nanomaterials (enhancing sensitivity), microfluidic chip technology (realizing automate operation), paper-based biosensors (reducing detection cost), and smartphones or other mobile devices (simplifying signal reading devices).
Collapse
|
6
|
Da-Silva E, Baudart J, Barthelmebs L. Biosensing platforms for Vibrio bacteria detection based on whole cell and nucleic acid analysis: A review. Talanta 2018; 190:410-422. [DOI: 10.1016/j.talanta.2018.07.092] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/27/2018] [Accepted: 07/31/2018] [Indexed: 11/15/2022]
|
7
|
Rahman M, Heng LY, Futra D, Ling TL. Ultrasensitive Biosensor for the Detection of Vibrio cholerae DNA with Polystyrene-co-acrylic Acid Composite Nanospheres. NANOSCALE RESEARCH LETTERS 2017; 12:474. [PMID: 28774152 PMCID: PMC5539059 DOI: 10.1186/s11671-017-2236-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 07/16/2017] [Indexed: 06/07/2023]
Abstract
An ultrasensitive electrochemical biosensor for the determination of pathogenic Vibrio cholerae (V. cholerae) DNA was developed based on polystyrene-co-acrylic acid (PSA) latex nanospheres-gold nanoparticles composite (PSA-AuNPs) DNA carrier matrix. Differential pulse voltammetry (DPV) using an electroactive anthraquninone oligonucleotide label was used for measuring the biosensor response. Loading of gold nanoparticles (AuNPs) on the DNA-latex particle electrode has significantly amplified the faradaic current of DNA hybridisation. Together with the use of a reported probe, the biosensor has demonstrated high sensitivity. The DNA biosensor yielded a reproducible and wide linear response range to target DNA from 1.0 × 10-21 to 1.0 × 10-8 M (relative standard deviation, RSD = 4.5%, n = 5) with a limit of detection (LOD) of 1.0 × 10-21 M (R 2 = 0.99). The biosensor obtained satisfactory recovery values between 91 and 109% (n = 3) for the detection of V. cholerae DNA in spiked samples and could be reused for six consecutive DNA assays with a repeatability RSD value of 5% (n = 5). The electrochemical biosensor response was stable and maintainable at 95% of its original response up to 58 days of storage period.
Collapse
Affiliation(s)
- Mahbubur Rahman
- Department of General Educational Development (GED), Faculty of Science and Information Technology, Daffodil International University, 102 & 102/1, Shukrabad, Mirpur Road, Dhanmondi, Dhaka, 1207, Bangladesh.
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, University Kebangsaan Malaysia, Bangi, 43600 UKM, Selangor D.E., Malaysia.
| | - Lee Yook Heng
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, University Kebangsaan Malaysia, Bangi, 43600 UKM, Selangor D.E., Malaysia
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI-UKM), Institute For Environment and Development (LESTARI), University Kebangsaan Malaysia, Bangi, 43600 UKM, Selangor D.E., Malaysia
| | - Dedi Futra
- Department of Chemistry Education, Faculty of Education, Graduate Program, University Riau, Pekanbaru, Riau, 28131, Indonesia
| | - Tan Ling Ling
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI-UKM), Institute For Environment and Development (LESTARI), University Kebangsaan Malaysia, Bangi, 43600 UKM, Selangor D.E., Malaysia
| |
Collapse
|
8
|
Da-Silva E, Barthelmebs L, Baudart J. Development of a PCR-free DNA-based assay for the specific detection of Vibrio species in environmental samples by targeting the 16S rRNA. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:5690-5700. [PMID: 28039632 DOI: 10.1007/s11356-016-8193-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/29/2016] [Indexed: 06/06/2023]
Abstract
A novel PCR-free DNA-based assay was developed for the detection of Vibrio spp. A sandwich hybridization format using an immobilized capture probe and a labeled signal probe was selected and combined with chemiluminescent method for the detection of the RNA target. In a first step, probes were validated using positive controls (PCs). A linearity was observed between 0.1 and 2.5 nM of PC, and detection limit was determined as 0.1 nM. In a second step, specificity was checked by using RNA extracted from a panel of 31 environmental bacterial strains. Detection limit of 5 ng μL-1 of total fragmented RNA was obtained, and the assay allowed a good discrimination between the 21 Vibrio and the 10 non-Vibrio strains tested. Finally, the DNA-based assay was successfully applied to analysis of spiked and natural environmental samples. Stability and analysis time of the DNA-based assay were also investigated to optimize working conditions. We demonstrated that microplates can be coated beforehand with capture probe and stored at 4 °C without any buffer in wells for at least 30 days. The use of the pre-made plates enables the assay to be completed in 2 h. The developed assay appeared as an interesting tool to determine the presence of bacteria in environmental samples.
Collapse
Affiliation(s)
- E Da-Silva
- Biocapteurs Analyses Environment, Université Perpignan, Via Domitia, 66860, Perpignan, France
- CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique, Sorbonne Universités, UPMC Univ. Paris 06, F-66650, Banyuls/Mer, France
| | - L Barthelmebs
- Biocapteurs Analyses Environment, Université Perpignan, Via Domitia, 66860, Perpignan, France.
| | - J Baudart
- CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique, Sorbonne Universités, UPMC Univ. Paris 06, F-66650, Banyuls/Mer, France
| |
Collapse
|
9
|
Low KF, Zain ZM, Yean CY. A signal-amplified electrochemical DNA biosensor incorporated with a colorimetric internal control for Vibrio cholerae detection using shelf-ready reagents. Biosens Bioelectron 2017; 87:256-263. [DOI: 10.1016/j.bios.2016.08.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 08/15/2016] [Accepted: 08/18/2016] [Indexed: 10/21/2022]
|
10
|
Khemthongcharoen N, Wonglumsom W, Suppat A, Jaruwongrungsee K, Tuantranont A, Promptmas C. Piezoresistive microcantilever-based DNA sensor for sensitive detection of pathogenic Vibrio cholerae O1 in food sample. Biosens Bioelectron 2015; 63:347-353. [DOI: 10.1016/j.bios.2014.07.068] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/13/2014] [Accepted: 07/24/2014] [Indexed: 10/25/2022]
|
11
|
Wang D, Dou W, Chen Y, Zhao G. Enzyme-functionalized electrochemical immunosensor based on electrochemically reduced graphene oxide and polyvinyl alcohol-polydimethylsiloxane for the detection of Salmonella pullorum & Salmonella gallinarum. RSC Adv 2014. [DOI: 10.1039/c4ra09901j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
12
|
Wang D, Dou W, Zhao G, Chen Y. Immunosensor based on electrodeposition of gold-nanoparticles and ionic liquid composite for detection of Salmonella pullorum. J Microbiol Methods 2014; 106:110-118. [PMID: 25193438 DOI: 10.1016/j.mimet.2014.08.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/10/2014] [Accepted: 08/26/2014] [Indexed: 11/17/2022]
Abstract
In order to increase the reproducibility and stability of electrochemical immunosensor, which is a key issue for its application and popularization, an accurate and stable immunosensor for rapid detection of Salmonella pullorum (S. pullorum) was proposed in this study. The immunosensor was fabricated by modifying Screen-printed Carbon Electrode (SPCE) with electrodeposited gold nanoparticles (AuNPs), HRP-labeled anti-S. pullorum and ionic liquids (ILs) (AuNP/HRP/IL). AuNPs are electrodeposited on the working electrode surface to increase the amount of antibodies that bind to the electrode and then modified with ILs to protect the antibodies from being inactivated in the test environment and maintain their biological activity and the stability of the detection electrode. The electrochemical characteristics of the stepwise modified electrodes and the detection of S. pullorum were investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). As shown in the results of the experiments, AuNPs with unique electrochemical properties as well as biocompatibility characteristics have been proven to be able to strengthen the antibody combination effectively and to increase the electrochemical response signal. In addition, a crucial assessment regarding implementation of stability and reproducibility analysis of a range of immunosensors is provided. We found that application of AuNPs/ILs in the immune modified electrodes showed obvious improvement when compared with other groups. Given their high levels of reproducibility, stability, target specificity and sensitivity, AuNPs and ILs were considered to be excellent elements for electrode modification.
Collapse
Affiliation(s)
- Dan Wang
- Food Safety Key Lab of Zhejiang Province, College of Food Science and Biotechnology Engineering, Zhejiang Gongshang University, Hangzhou 310035, PR China
| | - Wenchao Dou
- Food Safety Key Lab of Zhejiang Province, College of Food Science and Biotechnology Engineering, Zhejiang Gongshang University, Hangzhou 310035, PR China
| | - Guangying Zhao
- Food Safety Key Lab of Zhejiang Province, College of Food Science and Biotechnology Engineering, Zhejiang Gongshang University, Hangzhou 310035, PR China.
| | - Yan Chen
- Food Safety Key Lab of Zhejiang Province, College of Food Science and Biotechnology Engineering, Zhejiang Gongshang University, Hangzhou 310035, PR China
| |
Collapse
|
13
|
Fernandes AM, Abdalhai MH, Ji J, Xi BW, Xie J, Sun J, Noeline R, Lee BH, Sun X. Development of highly sensitive electrochemical genosensor based on multiwalled carbon nanotubes-chitosan-bismuth and lead sulfide nanoparticles for the detection of pathogenic Aeromonas. Biosens Bioelectron 2014; 63:399-406. [PMID: 25127474 DOI: 10.1016/j.bios.2014.07.054] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/27/2014] [Accepted: 07/22/2014] [Indexed: 12/28/2022]
Abstract
In this paper, we reported the construction of new high sensitive electrochemical genosensor based on multiwalled carbon nanotubes-chitosan-bismuth complex (MWCNT-Chi-Bi) and lead sulfide nanoparticles for the detection of pathogenic Aeromonas. Lead sulfide nanoparticles capped with 5'-(NH2) oligonucleotides thought amide bond was used as signalizing probe DNA (sz-DNA) and thiol-modified oligonucleotides sequence was used as fixing probe DNA (fDNA). The two probes hybridize with target Aeromonas DNA (tDNA) sequence (fDNA-tDNA-szDNA). The signal of hybridization is detected by differential pulse voltammetry (DPV) after electrodeposition of released lead nanoparticles (PbS) from sz-DNA on the surface of glass carbon electrode decorated with MWCNT-Chi-Bi, which improves the deposition and traducing electrical signal. The optimization of incubation time, hybridization temperature, deposition potential, deposition time and the specificity of the probes were investigated. Our results showed the highest sensibility to detect the target gene when compared with related biosensors and polymerase chain reaction (PCR). The detection limit for this biosensor was 1.0×10(-14) M. We could detect lower than 10(2) CFU mL(-1) of Aeromonas in spiked tap water. This method is rapid and sensitive for the detection of pathogenic bacteria and would become a potential application in biomedical diagnosis, food safety and environmental monitoring.
Collapse
Affiliation(s)
- António Maximiano Fernandes
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 7214122, China.
| | - Mandour H Abdalhai
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 7214122, China
| | - Jian Ji
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 7214122, China
| | - Bing-Wen Xi
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jun Xie
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jiadi Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 7214122, China
| | - Rasoamandrary Noeline
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 7214122, China
| | - Byong H Lee
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 7214122, China.
| |
Collapse
|
14
|
Low KF, Karimah A, Yean CY. A thermostabilized magnetogenosensing assay for DNA sequence-specific detection and quantification of Vibrio cholerae. Biosens Bioelectron 2013; 47:38-44. [DOI: 10.1016/j.bios.2013.03.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 03/04/2013] [Accepted: 03/05/2013] [Indexed: 10/27/2022]
|